Skip to content

Documentation: Multiple GPUs #165

@georgh

Description

@georgh

I think it would be great to have an example for using multiple GPUs.

Here is what I tried. If thats the right way to do it, then you may add it as an example.
It seems to scale fine (tested up to 7 GPUs) and nvidia-smi reports 96% util.

import time
import numpy as np
import arrayfire as af
import argparse
af.set_backend('cuda')

if __name__ == '__main__':
      parser = argparse.ArgumentParser()
      parser.add_argument('gpus', type=int)
      parser.add_argument('-runs', type=int, default=100)
      args = parser.parse_args()

      GPUS = args.gpus
      N = 5000
      runs = args.runs

      # The simple task we want to solve:
      # we have a huge list of vectors X and want to calculate the distance between all of them
      # this will result in a huge distance matrix M
      # the resulting matrix should be multiplied by a vector alpha
      X = np.random.rand(100, N)
      Alpha = np.random.rand(N,1)

      #copy data once:
      xGPU = []
      alphaGPU = []
      for i in range(GPUS):
            af.set_device(i)
            x = af.to_array(X)
            xGPU.append(x)
            alpha = af.to_array(Alpha)
            alphaGPU.append(alpha)

      sub = lambda a,b: a - b 
      print("init finished")
      for _ in range(runs):
            startTime = time.time()
            splitSize = int(np.ceil(N / GPUS))
            #print("Temp data will ocupy at least {:.2f} MB on the gpu.".format((X.shape[0] * splitSize * X.shape[1]) *8 /1024/1024))

            result = []
            for i in range(GPUS):
                  af.set_device(i)
                  x = xGPU[i]
                  alpha = alphaGPU[i]

                  start = i*splitSize
                  end = min((i+1)*splitSize, N) 

                  diff = af.broadcast(sub, af.tile(x[:,start:end],1,1,x.shape[1]), af.moddims(x,x.shape[0],1,x.shape[1]))
                  diff = af.sqrt(af.sum(af.pow(diff,2),0) )
                  r = af.matmul(af.moddims(diff, diff.shape[1], diff.shape[2]), alpha)
                  result.append(r)

            total = 0
            for i in range(GPUS):
                  af.set_device(i)
                  total += af.sum(result[i])

            print("Took {} sec".format(time.time() - startTime ))
 

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions