Skip to content

ascent-nav/code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🛠️ Installation

Environment Setup

!!! Some repositories are actually in this repository, can directly install dependencies !!!

1. Preparing conda env

Assuming you have conda installed, let's prepare a conda env:

conda_env_name=h3vlfm_world
conda create -n $conda_env_name python=3.9 cmake=3.14.0
conda activate $conda_env_name

Install proper version of torch:

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

2. Habitat-sim & Habitat-lab

Following Habitat-lab's instruction, install Habitat-sim:

conda install habitat-sim=0.3.1 withbullet -c conda-forge -c aihabitat

Then install Habitat-lab

Clone Project
Install
cd habitat-lab
pip install -e habitat-lab
pip install -e habitat-baselines
cd ..

3. Mobile-SAM

Following Mobile-SAM's instruction:

Install
pip install git+https://github.com/ChaoningZhang/MobileSAM.git

4. GroundingDINO

Following GroundingDINO's instruction:

Clone Project
Install

May define CUDA_HOME <= 11.8 export CUDA_HOME=/path/to/cuda-11.8

cd GroundingDINO/
pip install -e . --no-dependencies

Then place the pretrained model weights:

mkdir weights
cd weights
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ..

5. BLIP2

Install
pip install salesforce-lavis==1.0.2

6. RedNet

We use finetuned version of semantic segmentation model RedNet.

Therefore, you need to download the segmentation model in RedNet/model path.

7. D-Fine

git clone https://github.com/Peterande/D-FINE.git

8. Places365

git clone https://github.com/CSAILVision/places365.git

9. Others

pip install flask
pip install open3d 
pip install dash
pip install scikit-learn 
pip install joblib 
pip install seaborn
pip install faster_coco_eval
pip install calflops
pip install flash-attn --no-build-isolation
pip install modelscope
pip install opencv-python==4.10.0.84
pip install transformers==4.37.0
pip install openpyxl
pip install supervision==0.25.1
pip install yapf==0.43.0

Datasets Setup

  • Download Scene & Episode Datasets

Following the instructions for HM3D and MatterPort3D in Habitat-lab's Datasets.md.

  • Locate Datasets

The file structure should look like this:

data
└── datasets
    └── objectnav
        ├── hm3d
        │   └── v1
        │        ├── train
        │        │    ├── content
        │        │    └── train.json.gz
        │        └── val
        │             ├── content
        │             └── val.json.gz
        └── mp3d
            └── v1
                 ├── train
                 │    ├── content
                 │    └── train.json.gz
                 └── val
                      ├── content
                      └── val.json.gz

Command

Run the following commands:

./scripts/launch_vlm_servers_qwen25_gdino_with_ram.sh
python -u -m falcon.run --config-name=experiments/qwen25_gdino_objectnav_hm3d_debug_scene.yaml habitat_baselines.num_environments=1 > debug/20250219/eval_llm_single_floor_gdino.log 2>&1

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published