Skip to content

ashwin-v4/missing-data-imputation-with-maximum-likelihood-estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Missing Data Imputation with Maximum Likelihood Estimation

πŸ“Œ Exploratory Analysis – Lab Assessment 2

This project demonstrates how to handle missing data using Maximum Likelihood Estimation (MLE) on the NHANES dataset (2015–2016).


πŸ“‚ File Structure

  • Maximum_Likelihood_Estimation.ipynb β†’ Jupyter Notebook containing the full analysis and imputation process.
  • NHANES.csv β†’ Raw dataset with missing values.
  • NHANES_2015_2016_tidy_imputed.csv β†’ Cleaned and imputed dataset after applying MLE.

πŸ”Ž Workflow

  1. Load & Explore Data

    • Import the NHANES dataset.
    • Perform exploratory data analysis (EDA) to identify missing values.
  2. Imputation using Maximum Likelihood Estimation (MLE)

    • Apply statistical modeling for estimating missing values.
    • Validate assumptions and distributions.
  3. Save Final Dataset

    • Export the imputed data into a tidy CSV format.

βš™οΈ Requirements

Install the following Python libraries before running the notebook:

pip install pyampute missingno

About

Exploratory Analysis Lab Assessment 2

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published