2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos
This repository contains the code of our paper 2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos. If you use any part of our code, please cite:
@article{telili20222bivqa,
title={2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos},
author={Telili, Ahmed and Fezza, Sid Ahmed and Hamidouche, Wassim and Meftah, Hanene FZ},
journal={arXiv preprint arXiv:2208.14774},
year={2022}
}
pip install -r requirements.txt
Please note that the meta-data should be a csv file with two columns: video name and MOS.
python3 extract_features.py [-h] [-v 'path to videos directory']
[-f 'path to meta-data csv file']
[-o 'overlapping between patches']
[-fl 'flag: 0 for videos and 1 for images']
To extract features from images, please set flag to 1.
ResNet50 is used for features extractions.
This step can be skipped, and directly test the model in the next section with pre-trained models.
To train your own model:
python End2End_train.py [-h] [-nf number of frames to be extracted] [-b batch_size]
To train your own spatial pooling model on other image datasets:
python spatial_train.py [-h] [-p number of patches] [-b batch_size]
To test the model:
python test_model.py --dataset konvid
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
2BiVQA | 0.8463 | 0.8404 | 0.6529 | 0.3620 |
python test_model.py --dataset live
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
2BiVQA | 0.7614 | 0.8325 | 0.6212 | 9.9799 |
To predict the quality of your own dataset using pre-trained model:
python demo.py [-h] [-nf number of frames to be extracted] [-m path to pretrained model] [-f path to videos dir]
To evaluate the model:
Please note that your csv file should have two columns: 'Mos' and 'Predicted'.
python evaluate.py --mos_pred konvid.csv
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
BRISQUE | 0.6567 | 0.6576 | 0.4761 | 0.4813 |
NIQE | 0.5417 | 0.5530 | 0.3790 | 0.5336 |
ILNIQE | 0.5264 | 0.5400 | 0.3692 | 0.5406 |
VIIDEO | 0.2988 | 0.3002 | 0.2036 | 0.6101 |
GM-LOG | 0.6578 | 0.6636 | 0.4770 | 0.4818 |
HIGRADE | 0.7206 | 0.7269 | 0.5319 | 0.4391 |
FRIQUEE | 0.7472 | 0.7482 | 0.5509 | 0.4252 |
CORNIA | 0.7169 | 0.7135 | 0.5231 | 0.4486 |
HOSA | 0.7654 | 0.7664 | 0.5690 | 0.4142 |
V-BLIINDS | 0.7101 | 0.7037 | 0.5188 | 0.4595 |
TLVQM | 0.7729 | 0.7688 | 0.5770 | 0.4102 |
ResNet-50 | 0.8018 | 0.8104 | 0.6100 | 0.3749 |
VGG-19 | 0.7741 | 0.7845 | 0.5841 | 0.3958 |
KonCept512 | 0.7349 | 0.7489 | 0.5425 | 0.4260 |
VIDEVAL | 0.7832 | 0.7803 | 0.5845 | 0.4026 |
RAPIQUE | 0.8072 | 0.8175 | 0.6189 | 0.3623 |
2BiVQA | 0.8463 | 0.8404 | 0.6529 | 0.3620 |
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
BRISQUE | 0.5925 | 0.6380 | 0.4162 | 13.100 |
NIQE | 0.5957 | 0.6286 | 0.4252 | 13.110 |
ILNIQE | 0.5037 | 0.5437 | 0.3555 | 14.148 |
VIIDEO | 0.0332 | 0.0231 | 0.2146 | 16.654 |
GM-LOG | 0.5881 | 0.6212 | 0.4180 | 13.223 |
HIGRADE | 0.6103 | 0.6332 | 0.4391 | 13.027 |
FRIQUEE | 0.6579 | 0.7000 | 0.4770 | 12.198 |
CORNIA | 0.6719 | 0.7183 | 0.4849 | 11.832 |
HOSA | 0.6873 | 0.7414 | 0.5033 | 11.353 |
V-BLIINDS | 0.6939 | 0.7178 | 0.5078 | 11.765 |
TLVQM | 0.7988 | 0.8025 | 0.6080 | 10.145 |
ResNet-50 | 0.6636 | 0.7205 | 0.4786 | 11.591 |
VGG-19 | 0.6568 | 0.7160 | 0.4722 | 11.783 |
KonCept512 | 0.6645 | 0.7278 | 0.4793 | 11.626 |
VIDEVAL | 0.7522 | 0.7514 | 0.5639 | 11.100 |
RAPIQUE | 0.7415 | 0.7659 | 0.5576 | 10.6653 |
2BiVQA | 0.7614 | 0.8325 | 0.6212 | 9.9799 |
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
BRISQUE | 0.3820 | 0.3952 | 0.2635 | 0.5919 |
NIQE | 0.2379 | 0.2776 | 0.1600 | 0.6174 |
ILNIQE | 0.2918 | 0.3302 | 0.1980 | 0.6052 |
VIIDEO | 0.0580 | 0.1534 | 0.0389 | 0.6359 |
GM-LOG | 0.3678 | 0.3920 | 0.2517 | 0.5896 |
HIGRADE | 0.7376 | 0.7216 | 0.5478 | 0.4471 |
FRIQUEE | 0.7652 | 0.7571 | 0.5688 | 0.4169 |
CORNIA | 0.5972 | 0.6057 | 0.4211 | 0.5136 |
HOSA | 0.6025 | 0.6047 | 0.4257 | 0.5132 |
V-BLIINDS | 0.5590 | 0.5551 | 0.3899 | 0.5356 |
TLVQM | 0.6693 | 0.6590 | 0.4816 | 0.4849 |
ResNet-50 | 0.7183 | 0.7097 | 0.5229 | 0.4538 |
VGG-19 | 0.7025 | 0.6997 | 0.5091 | 0.4562 |
KonCept512 | 0.5872 | 0.5940 | 0.4101 | 0.5135 |
VIDEVAL | 0.7787 | 0.7733 | 0.5830 | 0.4049 |
RAPIQUE | 0.7610 | 0.7620 | 0.5610 | 0.4060 |
2BiVQA | 0.7716 | 0.7904 | 0.5812 | 0.4047 |
Methods | SROCC | PLCC | KROCC | RMSE |
---|---|---|---|---|
BRISQUE | 0.5695 | 0.5861 | 0.4030 | 0.5617 |
NIQE | 0.4622 | 0.4773 | 0.322 | 0.6112 |
ILNIQE | 0.4592 | 0.4741 | 0.3213 | 0.6119 |
VIIDEO | 0.1039 | 0.1621 | 0.0688 | 0.6804 |
GM-LOG | 0.5650 | 0.5942 | 0.3995 | 0.5588 |
HIGRADE | 0.7398 | 0.7368 | 0.5471 | 0.4674 |
FRIQUEE | 0.7568 | 0.7550 | 0.5651 | 0.4549 |
CORNIA | 0.6764 | 0.6974 | 0.4846 | 0.4946 |
HOSA | 0.6957 | 0.7082 | 0.5038 | 0.4893 |
V-BLIINDS | 0.6545 | 0.6599 | 0.4739 | 0.5200 |
TLVQM | 0.7271 | 0.7342 | 0.5347 | 0.4705 |
ResNet-50 | 0.7557 | 0.7747 | 0.5613 | 0.4385 |
VGG-19 | 0.7321 | 0.7482 | 0.5399 | 0.4610 |
KonCept512 | 0.6608 | 0.6763 | 0.4759 | 0.5091 |
VIDEVAL | 0.7960 | 0.7939 | 0.6032 | 0.4268 |
RAPIQUE | 0.8086 | 0.8186 | 0.6148 | 0.4076 |
2BiVQA | 0.8003 | 0.7941 | 0.6088 | 0.4218 |
[1] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi, S. Li,and D. Saupe, “The konstanz natural video database (konvid-1k),” in2017 Ninth international conference on quality of multimedia experience(QoMEX). IEEE, 2017, pp. 1–6.
[2] Z. Sinno and A. C. Bovik, “Large-scale study of perceptual videoquality,”IEEE Transactions on Image Processing, vol. 28, no. 2, pp.612–627, 2018.
[3] Y. Wang, S. Inguva, and B. Adsumilli, “Youtube ugc dataset for videocompression research,” in2019 IEEE 21st International Workshop onMultimedia Signal Processing (MMSP). IEEE, 2019, pp. 1–5.