-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Description
Describe the bug
When following the sample notebook referred to in the Deploy trained Keras or TensorFlow models using Amazon SageMaker blog post and specifying framework_version
and 2.1.0
when defining TensorFlowModel
I receive an UnexpectedStatusException
that the Docker image does not exist.
To reproduce
Deploy a pre-trained TF model by following the steps in Deploy trained Keras or TensorFlow models using Amazon SageMaker.
At Step 5, there is a line specifying
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '1.12,
entry_point = 'train.py')
I substitute this for
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py')
and get
UnexpectedStatusException: Error hosting endpoint sagemaker-tensorflow-2020-04-13-14-02-35-992: Failed. Reason: The image '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-cpu-py2' does not exist.
I get the same image does not exist error for all of the following configurations
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
py_version = 'py3')
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
image = '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-cpu-py2'
)
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
py_version = 'py3'
)
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
image = '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-cpu-py2'
)
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
image = '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-cpu-py3'
)
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
image = '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-gpu-py2'
)
from sagemaker.tensorflow.model import TensorFlowModel
sagemaker_model = TensorFlowModel(model_data = 's3://' + sagemaker_session.default_bucket() + '/model/model.tar.gz',
role = role,
framework_version = '2.1.0',
entry_point = 'train.py',
image = '520713654638.dkr.ecr.us-east-1.amazonaws.com/sagemaker-tensorflow:2.1.0-gpu-py3'
)
Expected behavior
I expected there to be prebuilt Docker images in the public AWS ECR for account ID 520713654638
following the format sagemaker-tensorflow:<tensorflow_version>-<processor>-<python_version>
for all supported versions of TensorFlow, which the documentation indicates includes 2.1.0.
System information
A description of your system. Please provide:
- Kernel: conda_tensorflow_p36
- Framework name (eg. PyTorch) or algorithm (eg. KMeans): TensorFlow
- Framework version: 2.1
- Python version: 2 and 3 (bug appears for both)
- CPU or GPU: CPU and GPU (bug appears for both)
- Custom Docker image (Y/N): N