-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Description
Describe the bug
A clear and concise description of what the bug is.
Using ModelPackage in a SageMaker Pipeline for inference. I expect to create a pipeline, use a model_version (string) as a parameter, and use ModelStep to dynamically create SageMaker Model and make batch inference. But if find this leads to an error
model_version is ParameterString
AttributeError Traceback (most recent call last)
<ipython-input-36-62c24131e39c> in <module>
7 step_create_model = ModelStep(
8 name="Create_Model",
----> 9 step_args=model.create(instance_type="ml.m5.large"),
10 depends_on = [step_lambda]
11 )
/opt/conda/lib/python3.7/site-packages/sagemaker/workflow/pipeline_context.py in wrapper(*args, **kwargs)
263 if run_func.__name__ in ["register", "create"]:
264 self_instance.sagemaker_session.init_model_step_arguments(self_instance)
--> 265 run_func(*args, **kwargs)
266 context = self_instance.sagemaker_session.context
267 self_instance.sagemaker_session.context = None
/opt/conda/lib/python3.7/site-packages/sagemaker/model.py in create(self, instance_type, accelerator_type, serverless_inference_config, tags)
471 accelerator_type=accelerator_type,
472 tags=tags,
--> 473 serverless_inference_config=serverless_inference_config,
474 )
475
/opt/conda/lib/python3.7/site-packages/sagemaker/model.py in _create_sagemaker_model(self, *args, **kwargs)
1604 container_def = {"ModelPackageName": model_package_name}
1605
-> 1606 self._ensure_base_name_if_needed(model_package_name.split("/")[-1])
1607 self._set_model_name_if_needed()
1608
AttributeError: 'Properties' object has no attribute 'split'
To reproduce
A clear, step-by-step set of instructions to reproduce the bug.
model_package_arn = "arn:xxxxxxxx:1" # Should be a ParameterString
model = ModelPackage(
role = role,
model_package_arn = model_package_arn,
sagemaker_session = pipeline_session,
)
step_create_model = ModelStep(
name="Create_Model",
step_args=model.create(instance_type="ml.m5.large"),
)
Expected behavior
A clear and concise description of what you expected to happen.
The ModelPackage model can be used to create sagemaker model successfully.
Screenshots or logs
If applicable, add screenshots or logs to help explain your problem.
System information
A description of your system. Please provide:
- SageMaker Python SDK version:
- Framework name (eg. PyTorch) or algorithm (eg. KMeans):
- Framework version:
- Python version:
- CPU or GPU:
- Custom Docker image (Y/N):
Additional context
Add any other context about the problem here.