Skip to content

KMS key not supported for FrameworkProcessor.run()  #3699

@huyqd

Description

@huyqd

Describe the bug
Cannot start a FrameworkProcessor (e.g. XGBoostProcessor) Processing Job using a custom-kms-encrypted S3 bucket.
I think the problem stems from this method here, it doesn't inherit the provided kms key

To reproduce

  • Create a KMS key
  • Add S3 bucket policy to only allow s3:PutObject action with the above KMS key
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "RestrictToDefaultOrKMS",
            "Effect": "Deny",
            "Principal": "*",
            "Action": "s3:PutObject",
            "Resource": "<bucket-arn>/*",
            "Condition": {
                "Null": {
                    "s3:x-amz-server-side-encryption": "false"
                },
                "StringNotEquals": {
                    "s3:x-amz-server-side-encryption": "aws:kms"
                }
            }
        },
        {
            "Sid": "Restrict_KMS_Key",
            "Effect": "Deny",
            "Principal": "*",
            "Action": "s3:PutObject",
            "Resource": "<bucket-arn>/*",
            "Condition": {
                "StringNotEqualsIfExists": {
                    "s3:x-amz-server-side-encryption-aws-kms-key-id": <kms-key-arn>
                }
            }
        }
    ]
}
  • Start a Sagemaker Processing Job with FrameworkProcessor, based on the processing step here
region = sagemaker.Session().boto_region_name
sm_client = boto3.client("sagemaker")
boto_session = boto3.Session(region_name=region)
sagemaker_session = sagemaker.session.Session(
    boto_session=boto_session,
    sagemaker_client=sm_client,
    default_bucket=<bucket-name>,
)
processor = XGBoostProcessor(
    framework_version="1.3-1",
    py_version="py3",
    instance_type="ml.m5.xlarge",
    instance_count=1,
    sagemaker_session=sagemaker_session,
    role=role,
    output_kms_key=<kms-key-arn>,
)

processor_run_args = sklearn_processor.run(
    kms_key=kms_key,
    outputs=[
        ProcessingOutput(
            output_name="train",
            source="/opt/ml/processing/train",
            destination=f"s3://{default_bucket}/PreprocessAbaloneDataForHPO"
        ),
        ProcessingOutput(
            output_name="validation",
            source="/opt/ml/processing/validation",
            destination=f"s3://{default_bucket}/PreprocessAbaloneDataForHPO"
        ),
        ProcessingOutput(
            output_name="test",
            source="/opt/ml/processing/test",
            destination=f"s3://{default_bucket}/PreprocessAbaloneDataForHPO"
        ),
    ],
    code="code/preprocess.py",
    arguments=["--input-data", "s3://sagemaker-sample-files/datasets/tabular/uci_abalone/abalone.csv"],
)

Expected behavior
Job starts and runs normally

Screenshots or logs
The error that I get
image

System information
A description of your system. Please provide:

  • SageMaker Python SDK version: 2.135.1
  • Framework name (eg. PyTorch) or algorithm (eg. KMeans): XGBoostProcessor (or any FrameworkProcessor)
  • Framework version: 1.3-1
  • Python version: py3
  • CPU or GPU: cpu
  • Custom Docker image (Y/N): No

Additional context
Add any other context about the problem here.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions