Skip to content

ayaanqui/expression-resolver

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Expression Resolver

Build Unit Tests HitCount License: MIT

The Expression Resolver for Java provides a very easy way to solve any valid mathematical expression. The string based expression is parsed, and then reduced to a single numeric value. If the experssion was unable to reduce completely, the program tries to give clear error messages, such that the user is notified. (Note: The program escapes all whitespaces and $ signs)

Features

Built-in math operators

  • Addition: +
  • Subtraction: -
  • Multiplication: *
  • Division: /
  • Exponent: ^
  • Parentheses: ( and )

*Note: Numbers/Variables followed directly by ( sign do not get identified as multiplication. Therefore, they must be shown explicitly (Ex. use 2*(1+1) instead of 2(1+1)). However, this is not the case if a - sign is followed by (, -(2*1) is equivalent to -1*(2*1).

Built-in functions

Function Description Inverse Parameter(s)
sin Sine (radians) arcsin n
cos Cosine (radians) arccos n
tan Tangent (radians) arctan n
sqrt Square root N/A n
ln Natural Log (log base e) exp n
log Log N/A n, base
deg Convert radians to degrees N/A n (radians)
rad Convert degrees to radians N/A n (degrees)
abs Absolute value N/A n
fact Factorial (!) N/A n (n >= 0)
avg Average N/A n1, ..., nk
sum Summation N/A n1, ..., nk

Built-in mathematical constants

  • PI (π): pi (3.141592653589793)
  • Euler's number (e): e (2.718281828459045)
  • Tau (τ or 2*π): tau (6.283185307179586)

Set up

Apache Maven

<dependencies>
    ...

    <dependency>
        <groupId>com.github.ayaanqui</groupId>
        <artifactId>expression-resolver</artifactId>
        <version>2.0</version>
    </dependency>
</dependencies>

Gradle

allprojects {
    repositories {
        ...

        maven { url "https://jitpack.io" }
    }
}
dependencies {
    ...

    implementation 'com.github.ayaanqui:expression-resolver:master-SNAPSHOT'
}

Usage

To set up ExpressionResolver, first make sure to import all necessary packages.

import com.github.ayaanqui.expressionresolver.Resolver;
import com.github.ayaanqui.expressionresolver.objects.Response;

Once these packages have been imported you can start using Resolver

// Create ExpressionResolver object
Resolver calculator = new Resolver();

A Resolver object gives access to methods:

  • setExpression Takes in a string expression
  • setFunction Define function
  • expressionList
  • getExpression Returns expression set using setExpression
  • getLastResult Returns last successfully solved expression
  • solveExpression Solves the expression set using setExpression or expressionList. Returns Response object

Setting expressions

Resolver res = new Resolver();

// First value
double value1 = res
    .setExpression("473+5711-sin(20)"); // Returns Resolver object
    .solveExpression() // Returns Response object...
    .result; // Holds double value computed by solveExpression()

// Second value
double value2 = res
    .setExpression("sum(53, 577, 19493, 374)"); // Returns Resolver object
    .solveExpression() // Returns Response object...
    .result; // Holds double value computed by solveExpression()

Response object

This object is returned by solveExpression which holds all the information about the solved expression:

  • success Returns a boolean value indicating whether the expression was reduced without an error
    • true when the expression was reduced with no error
    • false when there was an error reducing the expression
  • result If success == true then result holds the double value of the reduced expression
  • errors If success == false then errors holds an String array (String[]) describing each error

Examples

Basic use case

Resolver calculator = new Resolver();

calculator.setExpression("2+2");
double result = calculator.solveExpression().result; // 4

calculator.setExpression("95-10+2^(3+3)*10");
result = calculator.solveExpression().result; // 725.0

calculator.setExpression("sin(20) + pi * 2");
result = calculator.solveExpression().result; // 7.196130557907214

Accessing last result

Using the < operator allows access to the last successfull result

Resolver calculator = new Resolver();

calculator.setExpression("-pi^2");
Response res = calculator.solveExpression();
res.result // 9.869604401089358

calculator.setExpression("2+<");
calculator.solveExpression().result; // 11.869604401089358

Nested parentheses

Detects mismatched, or empty parentheses

Resolver solver = new Resolver();

solver.setExpression("1+((((((((((((1-1))))+2+2))))))))");
double value = solver.solveExpression().result; // 5

solver.setExpression("ln(((((((sin(tau/2))))))))-(((1+1)))");
double v2 = solver.solveExpression().result; // -38.63870901270898


// Mismatch parentheses error:
solver.setExpression("(1-2)/sin((3*2)/2");
Response res = solver.solveExpression();
// Check for errors
if (!res.success)
    System.out.println("Error: " + res.errors[0]); // Error: Parentheses mismatch

Variables

Assigned using the = operator. (Note: once a variable is assigned, the value cannot be changed)

Resolver solver = new Resolver();

// Declaring a new variable
double v1 = solver.setExpression("force = 10*16.46")
                .solveExpression()
                .result; // 164.60000000000002

// Using variable "force"
// force = 164.60000000000002
// pi = pre-defined π constant
double v2 = solver.setExpression("force + pi")
                .solveExpression()
                .result; // 167.7415926535898

// Results in an error (res.success = false)
Response res = solver.setExpression("1 = 2").solveExpression();
if (res.success == false)
    System.out.println("Error:\n" + res.errors[0] + "\n" + res.errors[1]);

// Results in an error (res.success = false)
// All variables are immutable (constant or unchangeable)
Response res = solver.setExpression("pi = 3.142").solveExpression();
if (res.success == false)
    System.out.println("Error:\n" + res.errors[0] + "\n" + res.errors[1]);

Defining functions

Functions can be defined by using setFunction method which takes two parameters: String function name, and Function<Double[], Double> function definition.

Resolver res = new Resolver();

// Defining min function
double minVal = res
    .setExpression("min(45, 9, 22, pi, 644, 004, 192)")
    //           Name   Function Definition
    .setFunction("min", params -> {
        double min = params[0];
        for (double val : params)
            if (val < min)
                min = val;
        return min;
    })
    .solveExpression().result; // pi

// Defining force function
double val = res
    .setFunction("force", params -> {
        return params[0] * params[1];
    })
    .setExpression("force(27, 10)")
    .solveExpression()
    .result;

// Redfining built-in function arcsin
res.setFunction("arcsin", params -> 1 / Math.sin(params[0]));

Releases

No releases published

Packages

 
 
 

Languages