-
Notifications
You must be signed in to change notification settings - Fork 2
/
writeup.tex
43 lines (32 loc) · 1.91 KB
/
writeup.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
\documentclass[12pt]{article}
\usepackage{fullpage,enumitem,amsmath,amssymb,graphicx}
\begin{document}
\begin{center}
{\Large CSED342 Spring 2021 Homework 8 \vspace{10pt}}
\begin{tabular}{rl}
Student ID: & 20190084 \\
Name: & Minjae Gwon \\
\end{tabular}
\end{center}
By turning in this assignment, I agree by the POSTECH honor code and declare that all of this is my own work.
\section*{Problem 2}
\begin{enumerate}[label=(\alph*)]
\item Show that $C$ could be derived within given knowledge base $\mathrm{KB}$.
\begin{enumerate}[label=(\roman*)]
\item Firstly, convert $\mathrm{KB}$ into CNF.
\begin{align*}
\frac{(A \lor B) \rightarrow C}{\lnot(A \lor B) \lor C} & \quad (\because P \rightarrow Q \text{ is equivalent to } \lnot P \lor Q)\\
\frac{\lnot(A \lor B) \lor C}{(\lnot A \land \lnot B) \lor C} & \quad (\because \lnot(P \lor Q) \text{ is equivalent to } (\lnot P \land \lnot Q)) \\
\frac{(\lnot A \land \lnot B) \lor C}{(\lnot A \lor C) \land (\lnot B \lor C)} & \quad (\because (P \land Q) \lor R \text{ is equivalent to } (P \lor R) \land (Q \lor R))
\end{align*}
Therefore, given knowledge base $\mathrm{KB}$ can be expressed in the following CNF.
\[\mathrm{KB}' = \{(\lnot A \lor C) \land (\lnot B \lor C), A\}\]
\item Lastly, inference from the derived formula.
\begin{align*}
\{(\lnot A \lor C) \land (\lnot B \lor C), A\} &\iff \{(A \rightarrow C) \land (B \rightarrow C), A\} \\
&\iff \{A \rightarrow C, B \rightarrow C, A\}
\end{align*}
\end{enumerate}
From $\mathrm{(ii)}$, $\mathrm{KB}'$ is equivalent to $\{A \rightarrow C, B \rightarrow C, A\}$, and it satisfies $\frac{A \rightarrow C, A}{C}$ (Modus ponens). It means $C$ can be derived from $\mathrm{KB}'$ by modus ponens. Also, using $\mathrm{(i)}$, $\mathrm{KB}'$ is equivalent to $\mathrm{KB}$, thus $C$ can be derived within $\mathrm{KB}$. \quad $\square$
\end{enumerate}
\end{document}