Skip to content
PoseNet localization task implementation on Apolloscape dataset with PyTorch.
Jupyter Notebook Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
assets
datasets
models
utils
.gitignore
Apolloscape_PoseNet.ipynb
Apolloscape_View_Records.ipynb
PoseNet_Experiments.ipynb
README.md
plot_dataset.py
process_figs.py
requirements.txt
train.py

README.md

Apolloscape dataset for localization task.

Exploring localization task on Apolloscape dataset.

Read my blog post about PoseNet implementation details https://capsulesbot.com/blog/2018/08/24/apolloscape-posenet-pytorch.html

ECCV2018 Self-localization on-the-fly challenge task details.

NOTE: This repository is a work in progress.

Prerequisites

Dataset reader based on Pytorch 0.4.1 Dataset. To install all dependencies:

pip install -r requirements.txt

Data

Download Apolloscape data from page and unpack it to a folder. Examples below assume that data folder symbolically linked to apolloscape-loc/data/apolloscape.

mkdir ./data
ln -s <DATA FOLDER>/apolloscape ./data

Sample data file for zpark road provided in localization challenge section supported automatically (it has different folder names, files order and pose data files format)

Python Notebook example

See roads and record graphs in Apolloscape_View_Records Notebook

PoseNet training, error calculation and result visualization in Apolloscape_PoseNet

PoseNet on Train

Show/Save path and sample images by record id

python plot_dataset.py --data ./data/apolloscape --road road03_seg --record Record018

Generate video of the path by record id

python plot_dataset.py --data ./data/apolloscape --road road03_seg --record Record018 --video

Record video

Train PoseNet convnet on ZPark road

python train.py --data ./data/apolloscape --road zpark-sample --checkpoint-save 50 --fig-save 1 --epochs 2000 --lr 1e-5 --experiment zpark_posenet_L1 --feature-net resnet34 --feature-net-pretrained --learn-beta

Training process:

Training and validation results:

TODO:

  • VidLoc implementation
  • [Optional] Prepare data for eval script
  • SfM / 3D Reconstruction pipeline
  • WGAN for generating new samples
  • Qt/OpenGL visualizations
You can’t perform that action at this time.