Skip to content

MATLAB scripts to facilitate handling and saving data from automated experiments.

Notifications You must be signed in to change notification settings

billtubbs/ml-data-utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

bfe8656 · Dec 6, 2022

History

20 Commits
Oct 1, 2022
Nov 29, 2021
Jun 7, 2022
Apr 5, 2022
Dec 29, 2021
Dec 6, 2022
Mar 14, 2022
Jun 7, 2022
Mar 24, 2022
Jun 10, 2022
Jul 14, 2022
Dec 6, 2022
Apr 5, 2022
Dec 6, 2022
Nov 29, 2021
Dec 6, 2022
Mar 14, 2022
Jun 7, 2022
Mar 24, 2022
Jun 10, 2022
Nov 29, 2021
Apr 5, 2022
Jun 10, 2022
Jun 10, 2022

Repository files navigation

ml-data-utils

MATLAB functions to facilitate handling and saving diverse data (variables, parameters, etc.) during automated calculations or experiments in one large CSV file for subsequent analysis.

Examples

The array2table_with_name function converts a matrix to a table with custom column labels.

X = reshape(1:6, 3, 2);
array2table_with_name(X.^2, 'Xsq')
ans =

  3×2 table

    Xsq1    Xsq2
    ____    ____

     1       16 
     4       25 
     9       36 

This is similar to but more concise than the built-in function array2table(X.^2, 'VariableNames', {'Xsq1', 'Xsq2'}).

The array2tablerow function converts an array into a table with one row by 'flattening' the elements, and adds column labels with subscripts to indicate the array indices.

array2tablerow(X.^2, 'Xsq')
ans =

  1×6 table

    Xsq_1_1    Xsq_2_1    Xsq_3_1    Xsq_1_2    Xsq_2_2    Xsq_3_2
    _______    _______    _______    _______    _______    _______

       1          4          9         16         25         36   

The objects2tablerow converts a Map container of MATLAB variables into a single table row. This is useful when iteratively recording a collection of variables or parameter values. A variety of MATLAB variable classes are supported.

person.name = "Amy";
person.age = int16(5);
person.siblings = {'Peter', 'Fred'};
data = [0.5377  1.8339 -2.2588];
vars = containers.Map({'Person', 'Data'}, {person, data});
T = objects2tablerow(vars)
T =

  1×7 table

    Data_1    Data_2    Data_3     Person_age    Person_name    Person_siblings_1    Person_siblings_2
    ______    ______    _______    __________    ___________    _________________    _________________

    0.5377    1.8339    -2.2588        5            "Amy"           {'Peter'}            {'Fred'}     

Use case example for objects2tablerow

% Demonstration of how to use objects2tablerow function
if ~isfolder('test')
    mkdir('test')
end

% Parameters
a_values = [1 2];
b_values = [10 15 20];
experiments = fullfact([numel(a_values) numel(b_values)]);

% Some arbitrary data
x = linspace(0, 5, 6);
y = 2*x - 10 + randn(1, 6);

for i = 1:size(experiments, 1)
    desc = sprintf("Experiment %d", i);
    params.a = a_values(experiments(i, 1));
    params.b = b_values(experiments(i, 2));

    % Run numerical experiment
    y_est = params.a*x + params.b;
    mse = mean((y_est - y).^2);
    results = containers.Map( ...
        {'i', 'Description', 'params', 'mse'}, ...
        {i, desc, params, mse} ...
    );
    new_results = objects2tablerow(results);

    % Save to csv file
    filename = 'experiment_results.csv';
    filepath = fullfile('test', filename);
    if isfile(filepath)
        % Load existing results and combine
        existing_results = readtable(filepath);
        new_results = vertcat(existing_results, new_results);
    end
    writetable(new_results, filepath);
end

% Display all results
readtable(filepath)

This produces a csv file with the following contents:


ans =

  6×5 table

      Description       i     mse      params_a    params_b
    ________________    _    ______    ________    ________

    {'Experiment 1'}    1    318.63       1           10   
    {'Experiment 2'}    2    408.89       2           10   
    {'Experiment 3'}    3    520.63       1           15   
    {'Experiment 4'}    4     635.9       2           15   
    {'Experiment 5'}    5    772.64       1           20   
    {'Experiment 6'}    6     912.9       2           20   

Automating Simulink simulations

This example shows how you can run Simulink model simulations from a Matlab script and capture the various types of simulation outputs as a table and/or csv file.

sim_model = "sim_test_model";
nT = 15;  % number of samples
Ts = 0.2;  % sample period (set Simulink 'to workspace' blocks to sample at Ts

% Prepare simulation inputs
t = Ts*(0:nT)';  % time vector
u = zeros(nT,1);
u(t > 1) = 1;  % input signal

simin.u = [t u];  % make this a workspace input in Simulink
sim_results = run_simulation(sim_model, t, 'sim_result.csv');

head(sim_results)

Output:


ans =

  8×7 table

     t     Y_1     Y_2     Y_3      y1      y2      y3 
    ___    ____    ____    ____    ____    ____    ____

      0       0       0       0       0       0       0
    0.2       0       0       0       0       0       0
    0.4       0       0       0       0       0       0
    0.6       0       0       0       0       0       0
    0.8       0       0       0       0       0       0
      1       0       0       0       0       0       0
    1.2     0.1     0.1     0.1     0.1     0.1     0.1
    1.4    0.19    0.19    0.19    0.19    0.19    0.19

About

MATLAB scripts to facilitate handling and saving data from automated experiments.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages