Skip to content

πŸ§ͺ Core ML algorithm implementations with GPU acceleration. Featuring optimized implementations across various libraries with comprehensive analysis. πŸ“ˆ

License

Notifications You must be signed in to change notification settings

BjornMelin/ml-algorithm-playground

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ML Algorithm Playground πŸ§ͺ

Python scikit-learn XGBoost CUDA License

Core ML algorithm implementations with GPU acceleration. Featuring optimized implementations across various libraries with comprehensive analysis.

Features β€’ Installation β€’ Quick Start β€’ Documentation β€’ Contributing

πŸ“‘ Table of Contents

✨ Features

  • Classical ML algorithm implementations
  • GPU-accelerated training
  • Performance optimization techniques
  • Comparative analysis tools
  • Interactive examples and tutorials

πŸ“ Project Structure

graph TD
    A[ml-algorithm-playground] --> B[algorithms]
    A --> C[optimization]
    A --> D[examples]
    A --> E[benchmarks]
    B --> F[supervised]
    B --> G[unsupervised]
    B --> H[ensemble]
    C --> I[gpu]
    C --> J[parallel]
    D --> K[notebooks]
    D --> L[tutorials]
    E --> M[performance]
    E --> N[comparison]
Loading
Click to expand full directory structure
ml-algorithm-playground/
β”œβ”€β”€ algorithms/         # Algorithm implementations
β”‚   β”œβ”€β”€ supervised/    # Supervised learning
β”‚   β”œβ”€β”€ unsupervised/ # Unsupervised learning
β”‚   └── ensemble/     # Ensemble methods
β”œβ”€β”€ optimization/      # Optimization utilities
β”‚   β”œβ”€β”€ gpu/          # GPU acceleration
β”‚   └── parallel/     # Parallel processing
β”œβ”€β”€ examples/         # Example implementations
β”œβ”€β”€ benchmarks/       # Performance tests
β”œβ”€β”€ tests/           # Unit tests
└── README.md        # Documentation

πŸ”§ Prerequisites

  • Python 3.8+
  • CUDA 11.8+
  • scikit-learn 1.3+
  • XGBoost 2.0+
  • NVIDIA GPU (optional)

πŸ“¦ Installation

# Clone repository
git clone https://github.com/BjornMelin/ml-algorithm-playground.git
cd ml-algorithm-playground

# Create environment
python -m venv venv
source venv/bin/activate

# Install dependencies
pip install -r requirements.txt

πŸš€ Quick Start

from ml_playground import algorithms, optimization

# Initialize model with GPU support
model = algorithms.GradientBoosting(
    gpu_acceleration=True,
    n_estimators=100
)

# Train model with automatic optimization
trained_model = optimization.train_with_gpu(
    model,
    X_train,
    y_train,
    optimization_level='O2'
)

# Make predictions
predictions = trained_model.predict(X_test)

πŸ“š Documentation

Algorithms

Algorithm Type GPU Support Performance Gain
XGBoost Gradient Boosting βœ“ 10x
K-Means Clustering βœ“ 5x
SVM Classification βœ“ 8x
Random Forest Ensemble βœ“ 4x

Optimization

  • GPU acceleration
  • Multi-threading
  • Memory optimization
  • CUDA kernels

Benchmarks

Algorithm performance comparison:

Dataset Size Algorithm CPU Time GPU Time Speedup
1M samples XGBoost 45s 5s 9x
500K samples K-Means 30s 6s 5x
2M samples Random Forest 120s 30s 4x

🀝 Contributing

πŸ“Œ Versioning

We use SemVer for versioning. For available versions, see the tags on this repository.

✍️ Authors

Bjorn Melin

πŸ“ Citation

@misc{melin2024mlalgorithmplayground,
  author = {Melin, Bjorn},
  title = {ML Algorithm Playground: GPU-Accelerated Machine Learning Implementations},
  year = {2024},
  publisher = {GitHub},
  url = {https://github.com/BjornMelin/ml-algorithm-playground}
}

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • scikit-learn developers
  • XGBoost team
  • NVIDIA for CUDA support
  • Open source ML community

Made with πŸ§ͺ and ❀️ by Bjorn Melin

About

πŸ§ͺ Core ML algorithm implementations with GPU acceleration. Featuring optimized implementations across various libraries with comprehensive analysis. πŸ“ˆ

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published