Skip to content

Code for training (pre-training and fine-tuning) open-source LLMs, and running models in chat mode

License

Notifications You must be signed in to change notification settings

byte-genie/llm-genie

Repository files navigation

LLM-Genie: an integrated framework for LLM training

Supported Models

Model Model size Default module Template
LLaMA 7B/13B/33B/65B q_proj,v_proj -
LLaMA-2 7B/13B/70B q_proj,v_proj llama2
Falcon 7B/40B query_key_value -
Qwen 7B c_attn chatml
ChatGLM2 6B query_key_value chatglm2
  • Default module is used for the --lora_target argument. Please use python src/train_bash.py -h to see all available options.
  • For the "base" models, the --template argument can be chosen from default, alpaca, vicuna etc. But make sure to use the corresponding template for the "chat" models.

Supported Training Approaches

Approach Full-parameter Partial-parameter LoRA QLoRA
Pre-Training
Supervised Fine-Tuning
Reward Modeling
PPO Training
DPO Training
  • Use --quantization_bit 4/8 argument to enable QLoRA.

Provided Datasets

Please refer to data/README.md for details.

Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.

pip install --upgrade huggingface_hub
huggingface-cli login

Requirement

  • Python 3.8+ and PyTorch 1.13.1+
  • 🤗Transformers, Datasets, Accelerate, PEFT and TRL
  • sentencepiece and tiktoken
  • jieba, rouge-chinese and nltk (used at evaluation)
  • gradio and matplotlib (used in web_demo.py)
  • uvicorn, fastapi and sse-starlette (used in api_demo.py)

Getting Started

Data Preparation (optional)

Please refer to data/example_dataset for checking the details about the format of dataset files. You can either use a single .json file or a dataset loading script with multiple files to create a custom dataset.

Note: please update data/dataset_info.json to use your custom dataset. About the format of this file, please refer to data/README.md.

Dependence Installation (optional)

git lfs install
git clone https://github.com/byte-genie/llm-genie.git
conda create -n llm-genie python=3.10
conda activate llm-genie
cd llm-genie
pip install -r requirements.txt

If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of bitsandbytes library, which supports CUDA 11.1 to 12.1.

pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl

Pre-Training

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage pt \
    --model_name_or_path path_to_your_model \
    --do_train \
    --dataset wiki_demo \
    --template default \
    --finetuning_type lora \
    --output_dir path_to_pt_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

Supervised Fine-Tuning

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_your_model \
    --do_train \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

Reward Modeling

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage rm \
    --model_name_or_path path_to_your_model \
    --do_train \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_rm_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

DPO Training

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage dpo \
    --model_name_or_path path_to_your_model \
    --do_train \
    --dataset comparison_gpt4_en \
    --template default \
    --finetuning_type lora \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_dpo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

Distributed Training

Use Huggingface Accelerate

accelerate config # configure the environment
accelerate launch src/train_bash.py # arguments (same as above)
Example config.yaml for training with DeepSpeed ZeRO-2
compute_environment: LOCAL_MACHINE
deepspeed_config:
  gradient_accumulation_steps: 4
  gradient_clipping: 0.5
  offload_optimizer_device: none
  offload_param_device: none
  zero3_init_flag: false
  zero_stage: 2
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Use DeepSpeed

deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
    --deepspeed ds_config.json \
    ... # arguments (same as above)
Example ds_config.json for training with DeepSpeed ZeRO-2
{
  "train_micro_batch_size_per_gpu": "auto",
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "zero_allow_untested_optimizer": true,
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "initial_scale_power": 16,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },  
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 5e8,
    "reduce_scatter": true,
    "reduce_bucket_size": 5e8,
    "overlap_comm": false,
    "contiguous_gradients": true
  }
}

Evaluation (BLEU and ROUGE_CHINESE)

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_your_model \
    --do_eval \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_eval_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \
    --predict_with_generate

We recommend using --per_device_eval_batch_size=1 and --max_target_length 128 at 4/8-bit evaluation.

Predict

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path path_to_your_model \
    --do_predict \
    --dataset alpaca_gpt4_en \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_predict_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \
    --predict_with_generate

API Demo

python src/api_demo.py \
    --model_name_or_path path_to_your_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

Visit http://localhost:8000/docs for API documentation.

CLI Demo

python src/cli_demo.py \
    --model_name_or_path path_to_your_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

Web Demo

python src/web_demo.py \
    --model_name_or_path path_to_your_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint

Export model

python src/export_model.py \
    --model_name_or_path path_to_your_model \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \
    --output_dir path_to_export

License

This repository is licensed under the Apache-2.0 License.

Please follow the model licenses to use the corresponding model weights:

Citation

Cite this work as:

@Misc{llm-genie,
  title = {LLM-Genie: an operating system for LLM training},
  author = {ByteGenie},
  howpublished = {\url{https://github.com/byte-genie/llm-genie}},
  year = {2023}
}

About

Code for training (pre-training and fine-tuning) open-source LLMs, and running models in chat mode

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published