BaseHash is a small library for creating reversible obfuscated identifier hashes to a given base and length. The project is based on the GO library, PseudoCrypt by Kevin Burns. The library is extendible to use custom alphabets and other bases.
The library uses golden primes and the Baillie-PSW primality test or the
gmpy2.is_prime
(if available) for hashing to maximum
length (base ** length - 1
).
A massive overhaul was done with the primality algorithms. Including support for gmpy2 if it available on the system for that much more of an increase.
All methods being used to check primality in primes.py
have been optimized and
benchmarked to try to get the best possible preformance when gmpy2.is_prime
and gmpy2.next_prime
are not available.
--------------------------------------------------------------------------------
basehash 3.0.0 vs basehash 2.2.1 speed comparison. (without gmpy2)
testing against random 128-bit integer with BASE62 and length of 30.
comparing best 100 of 1000 loops.
--------------------------------------------------------------------------------
bh300 @ 0.011989977s
bh220 @ 0.019100001s
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
basehash 3.0.0 vs basehash 2.2.1 speed comparison. (with gmpy2)
testing against random 128-bit integer with BASE62 and length of 30.
comparing best 100 of 1000 loops.
--------------------------------------------------------------------------------
bh300 @ 0.002969882s
bh220 @ 0.018960006s
--------------------------------------------------------------------------------
pip install basehash
nosetests tests/
import basehash
base62 = basehash.base62(8)
encoded = base62.encode(2013)
decoded = base62.decode('WT')
print encoded, decoded
WT 2013
import basehash
base62 = basehash.base62(8)
hashed = base62.hash(2013)
unhashed = base62.unhash('6LhOma5b')
print hashed, unhashed
6LhOma5b 2013
The GENERATOR
variable uses the golden ratio, 1.618033988749894848
, to get
the next highest prime of base ** number * generator
. This can be overridden
within the base classes.
import basehash
base62 = basehash.base62(generator=1.75)
There is a maximum number while hashing with any given base. To find out what
this number is, we use the Base^Length - 1
.
import basehash
base36 = basehash.base36(10)
print base36.maximum
4738381338321616895
So with the max number for base36
at length 12
as 4738381338321616895
we
get the following:
import basehash
base36 = basehash.base36(12)
hash = base36.hash(4738381338321616895)
# 'DR10828P4CZP'
hash = base36.hash(4738381338321616896)
# ValueError: Number is too large for given length. Maximum is 36^12 - 1.
Extending is made easy with some time spent determining the next highest prime dynamically, the fastest possible that I have been able to make it so far.
import basehash
custom = basehash.base('24680ACEGIKMOQSUWYbdfhjlnprtvxz', 8)
print custom.encode(2013) # 66x
print custom.decode('66x') # 2013
print custom.hash(2013) # 8AQAQdYd
print custom.unhash('8AQAQdYd') # 2013
print custom.maximum # 787662783788549760