Skip to content

carla-simulator/reinforcement-learning

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 

Reinforcement Learning in CARLA

We release a trained RL agent from the CoRL-2017 paper "CARLA: An Open Urban Driving Simulator". This is only the inference code, the training code is not released yet.

The agent was trained with the asynchronous advantage actor-critic (A3C) algorithm by V. Mnih et al. (2016). We build on this open-source Chainer implementation: https://github.com/muupan/async-rl .

Dependencies

Tested with:

  • CARLA 0.8.2
  • python 3.6
  • chainer 1.24.0
  • cached-property 1.4.2
  • PIL 5.1.0
  • opencv 3.3.1
  • h5py 2.7.1

In Anaconda, you can create and activate an environment with installed dependencies (except for CARLA) by running:

conda create -n carla_rl python=3.6 chainer=1.24.0 cached-property=1.4.2 pillow=5.1.0 opencv=3.3.1 h5py=2.7.1
source activate carla_rl

To start evaluation on the CoRL-2017 benchmark:

  • Start a CARLA server on town TownXX (Town01 or Town02) and port PORT (this is to be executed in the CARLA server folder):
./CarlaUE4.sh /Game/Maps/TownXX -carla-server -benchmark -fps=10 -windowed -ResX=800 -ResY=600 -carla-world-port=PORT
  • Make sure CARLA client is in your python path, e.g. by running:
export PYTHONPATH=/path/to/CARLA/PythonClient:$PYTHONPATH
  • Run the evaluation:
python run_RL.py --city-name TownXX --port PORT --corl-2017

The results will be stored in _benchmarks_results.

Paper

If you use this code in your research, please cite our CoRL 2017 paper:

@inproceedings{Dosovitskiy17,
  title = { {CARLA}: {An} Open Urban Driving Simulator},
  author = {Alexey Dosovitskiy and German Ros and Felipe Codevilla and Antonio Lopez and Vladlen Koltun},
  booktitle = {Proceedings of the 1st Annual Conference on Robot Learning},
  pages = {1--16},
  year = {2017}
}

About

Reinforcement learning baseline agent trained with the Actor-critic (A3C) algorithm.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages