-
Notifications
You must be signed in to change notification settings - Fork 0
cavazos-lab/cisc372-lab-7
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
USING CUDA.ACAD FOR GPU PROGRAMMING ======================================================================== LOGGING INTO CUDA.ACAD ------------------------------------------------------------------------ Machine name is: cuda.acad.ece.udel.edu Username is your eecis username Password is your eecis password If you do not have an EECIS account, request one! ENVIRONMENT SETUP ------------------------------------------------------------------------ NOTE: The following instructions will assume that you are using the BASH shell (Bourne Again Shell) To switch to bash, invoke the following command: "exec /bin/bash" or "bash" 1. Log into cuda.acad.ece.udel.edu using eecis user name/password INSTALLING THE NVIDIA GPU COMPUTING SDK (OPTIONAL) ------------------------------------------------------------------------ 1. Copy the CUDA samples (version 6.5) with the following command: /usr/local/bin/cuda-install-samples-6.5.sh ~ 2. Goto directory 0_Simple/VectorAdd or 1_Utility/DeviceQuery type "make" Executables are generated REFERENCING EXAMPLE CODE (CUDA/C) ------------------------------------------------------------------------ CUDA Examples are found under each subfolder of NVIDIA_CUDA-V6.5_samples COMPILING CODE ------------------------------------------------------------------------ To compile an example program/lab: invoke "make" from the sample lab folder you are trying to compile. CUDA: make If you choose to remember compiling commands well, feel free to reference a brief guide to compiling various code below. CUDA: nvcc [nvcc options] <inputfiles> e.g. nvcc -O2 -o matmul matmul.cu RUNNING CODE ------------------------------------------------------------------------ cuda.acad uses Simple Linux Utility for Resource Management (SLURM) to manage the GPUs. In order to run code on the GPUs we need to request access to the GPU. To request access we issue the following command: srun -N1 --gres=gpu:1 <path to executable> Notes: * Do not change -N1 (we only have one node available) * If running on multiple GPUs (not likely) then change the number for -gres=gpu:1 to the desired number <= 4 example execution: srun -N1 --gres=gpu:1 ./deviceQuery or srun -N1 --gres=gpu:1 ./vectorAdd ADDITIONAL INFORMATION ------------------------------------------------------------------------ EECIS CUDA system documentation: https://www.eecis.udel.edu/wiki/ececis-docs/index.php/FAQ/Applications#toc21 NVIDIA GPU Computing SDK info from NVIDIA: http://developer.nvidia.com/gpu-computing-sdk
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published