Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.rst

muffnn

Build status Latest version on PyPI

scikit-learn-compatible neural network models implemented in TensorFlow

Installation

This package currently supports Python 3.5, 3.6, and 3.7.

Installation with pip is recommended:

pip install muffnn

You can install the dependencies via:

pip install -r requirements.txt

If you have trouble installing TensorFlow, see this page for more details.

For development, a few additional dependencies are needed:

pip install -r dev-requirements.txt

Usage

Each estimator in the code follows the scikit-learn API. Thus usage follows the scikit-learn conventions:

from muffnn import MLPClassifier

X, y = load_some_data()

mlp = MLPClassifier()
mlp.fit(X, y)

X_new = load_some_unlabeled_data()
y_pred = mlp.predict(X_new)

Further, serialization of the TensorFlow graph and data is handled automatically when the object is pickled:

import pickle

with open('est.pkl', 'wb') as fp:
    pickle.dump(est, fp)

Contributing

See CONTIBUTING.md for information about contributing to this project.

License

BSD-3

See LICENSE.txt for details.

About

Multilayer Feed-Forward Neural Network predictive model implementations with TensorFlow and scikit-learn

Resources

License

Packages

No packages published

Languages

You can’t perform that action at this time.