Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions Dijkstra.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
#include <stdio.h>
#include <limits.h>
#include <stdbool.h>
// Number of vertices in the graph
#define V 14

// A utility function to find the vertex with minimum distance
// value, from the set of vertices not yet included in shortest
// path tree
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;

for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;

return min_index;
}

// Function to print shortest path from source to j
// using parent array
void printPath(int parent[], int j)
{
// Base Case : If j is source
if (parent[j]==-1)
return;

printPath(parent, parent[j]);

printf("%d ", j);
}

// A utility function to print the constructed distance
// array
int printSolution(int dist[], int n, int parent[])
{
int src = 0;
printf("Vertex\t Distance\tPath");
for (int i = 1; i < V; i++)
{
printf("\n%d -> %d \t\t %d\t\t%d ", src, i, dist[i], src);
printPath(parent, i);
}
}

// Funtion that implements Dijkstra's single source shortest path
// algorithm for a graph represented using adjacency matrix
// representation
void dijkstra(int graph[V][V], int src)
{
int dist[V]; // The output array. dist[i] will hold
// the shortest distance from src to i

// sptSet[i] will true if vertex i is included / in shortest
// path tree or shortest distance from src to i is finalized
bool sptSet[V];

// Parent array to store shortest path tree
int parent[V];

// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
{
parent[0] = -1;
dist[i] = INT_MAX;
sptSet[i] = false;
}

// Distance of source vertex from itself is always 0
dist[src] = 0;

// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of
// vertices not yet processed. u is always equal to src
// in first iteration.
int u = minDistance(dist, sptSet);

// Mark the picked vertex as processed
sptSet[u] = true;

// Update dist value of the adjacent vertices of the
// picked vertex.
for (int v = 0; v < V; v++)

// Update dist[v] only if is not in sptSet, there is
// an edge from u to v, and total weight of path from
// src to v through u is smaller than current value of
// dist[v]
if (!sptSet[v] && graph[u][v] &&
dist[u] + graph[u][v] < dist[v])
{
parent[v] = u;
dist[v] = dist[u] + graph[u][v];
}
}

// print the constructed distance array
printSolution(dist, V, parent);
}

// driver program to test above function
int main()
{
/* Let us create the example graph discussed above */
int graph[V][V] = {{0, 4, 5, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0},

{4, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{5, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ,0},
{0, 1, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0}, // Choosing the vertex 0 as source
{8, 0, 0, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0},
{0, 0, 0 ,3 ,0, 5, 0, 1, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0 ,1 ,0, 0, 0, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0},
{0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 0, 9, 1, 0},
{0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 6, 0},
{0, 0, 0, 0, 0, 0, 0, 0 ,0 ,9 ,1 ,0 ,0 ,4},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0},
};

dijkstra(graph, 0);

return 0;
}