Skip to content

Integrate Line Profiler in Codeflash CF-470 #35

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 53 commits into from
Apr 2, 2025
Merged

Conversation

aseembits93
Copy link
Contributor

@aseembits93 aseembits93 commented Mar 5, 2025

User description

just the todos here. will edit the description when done.


PR Type

  • Enhancement
  • Tests

Description

  • Introduce line profiler API endpoint in aiservice.

  • Add utilities to inject decorators and enable line profiling.

  • Update optimizer to use line profiler results.

  • Enhance tests to validate line profiler integration.


Changes walkthrough 📝

Relevant files
Enhancement
9 files
bubble_sort_classmethod.py
Add class method sorting function using nested class         
+6/-0     
bubble_sort_nested_classmethod.py
Add nested class method sorting function using WrapperClass
+6/-0     
aiservice.py
Introduce API call for line profiler optimization               
+66/-0   
line_profile_utils.py
Create utilities for decorator injection and profile enablement
+237/-0 
tabulate.py
Add comprehensive tabulate functionality for profiling output
+1047/-0
models.py
Extend models with line profiler results and enum               
+2/-0     
function_optimizer.py
Integrate and process line profiler results in optimizer 
+160/-96
parse_line_profile_test_output.py
Implement parsing and text display for line profiler output
+87/-0   
test_runner.py
Add support for running line profiler tests via pytest     
+61/-0   
Tests
1 files
test_instrument_tests.py
Update tests to validate line profiler instrumentation and parsing
+113/-2 

Need help?
  • Type /help how to ... in the comments thread for any questions about PR-Agent usage.
  • Check out the documentation for more information.
  • Copy link

    github-actions bot commented Mar 5, 2025

    Failed to generate code suggestions for PR

    @KRRT7
    Copy link
    Contributor

    KRRT7 commented Mar 5, 2025

    TODO: see if line profiler is compaitble qwith coverage run, if so see if the profiling info changes if run along side coverage compared to without it

             Profiling (from /Users/krrt7/Desktop/work/my-best-repo/prof/combined.prof):                                                                          
             Tue Mar  4 18:17:35 2025    /Users/krrt7/Desktop/work/my-best-repo/prof/combined.prof                                                                
                                                                                                                                                                  
                      154289 function calls (141526 primitive calls) in 0.813 seconds                                                                             
                                                                                                                                                                  
                Ordered by: cumulative time                                                                                                                       
                List reduced from 490 to 20 due to restriction <20>                                                                                               
                                                                                                                                                                  
                ncalls  tottime  percall  cumtime  percall filename:lineno(function)                                                                              
                    30    0.000    0.000    0.812    0.027                                                                                                        
             /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:110(pytest_runtest_protocol)                                         
                    30    0.000    0.000    0.809    0.027 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:118(runtestprotocol)   
               510/390    0.001    0.000    0.809    0.002 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/pluggy/_hooks.py:498(__call__)           
                    90    0.000    0.000    0.809    0.009 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:226(call_and_report)   
               510/390    0.000    0.000    0.808    0.002 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/pluggy/_manager.py:111(_hookexec)        
               510/390    0.003    0.000    0.808    0.002 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/pluggy/_callers.py:53(_multicall)        
                    90    0.000    0.000    0.794    0.009 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:319(from_call)         
                    90    0.000    0.000    0.794    0.009 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:242(<lambda>)          
                    30    0.000    0.000    0.785    0.026                                                                                                        
             /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/runner.py:163(pytest_runtest_call)                                             
                    30    0.000    0.000    0.785    0.026 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/python.py:1625(runtest)          
                    30    0.000    0.000    0.785    0.026 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/_pytest/python.py:152(pytest_pyfunc_call)
                    53    0.754    0.014    0.755    0.014 /Users/krrt7/Desktop/work/my-best-repo/bubble_sort.py:1(sorter)                                        
                    25    0.000    0.000    0.576    0.023 /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_1.py:15(codeflash_wrap)            
                     1    0.000    0.000    0.222    0.222                                                                                                        
             /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_1.py:309(test_large_list_reverse_sorted_elements)                                
                    28    0.000    0.000    0.204    0.007 /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_0.py:15(codeflash_wrap)            
                     1    0.000    0.000    0.200    0.200 /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_0.py:300(test_large_array)         
                     1    0.000    0.000    0.137    0.137 /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_1.py:449(test_very_large_list)     
                     1    0.000    0.000    0.133    0.133                                                                                                        
             /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_1.py:270(test_large_list_random_elements)                                        
                     1    0.000    0.000    0.083    0.083                                                                                                        
             /Users/krrt7/Desktop/work/my-best-repo/tests/test_sorter__unit_test_1.py:291(test_large_list_sorted_elements)                                        
                    53    0.000    0.000    0.020    0.000 /Users/krrt7/miniforge3/envs/dev/lib/python3.11/site-packages/dill/_dill.py:263(dumps)                 
                                                                                                                                                                  
                                                                                                                                                                  
             30 passed in 1.00s                                                                                                                                   
    

    you won't want to use line-profiler with coverage run, it won't profile what we need to profile correctly

    @aseembits93 aseembits93 marked this pull request as draft March 6, 2025 01:17
    .env Outdated
    @@ -0,0 +1,2 @@
    CODEFLASH_AIS_SERVER=local
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    Never commit.env files.

    Copy link
    Contributor Author

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    that's right, reason i'm doing it right now is that I usually call git clean for removing concolic test dirs which accidentally deletes the env file/s. it won't be in the final pr of course.

    Copy link
    Contributor

    @alvin-r alvin-r left a comment

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    write tests

    codeflash-ai bot added a commit that referenced this pull request Apr 1, 2025
    …-profiler`)
    
    To make the given Python program faster, we can improve the performance of the `_pipe_line_with_colons` function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.
    
    
    
    ### Explanation of Changes.
    1. **Reduce Function Calls within Loops**: By directly including the logic from `_pipe_segment_with_colons` within the loop in `_pipe_line_with_colons`, we avoid the overhead of repeatedly calling the `_pipe_segment_with_colons` function.
    2. **Optimize List Construction**: We merged the list comprehension into a standard `for` loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. **Optimize Condition Check**: Simplified the alignment checks by directly comparing the `align` variable instead of storing and passing it around. This reduces the memory overhead.
    
    This will result in decreased execution time particularly when processing larger tables.
    Comment on lines +274 to +285
    return fmt.format(s)


    def _padnone(ignore_width, s):
    return s


    def _strip_ansi(s):
    if isinstance(s, str):
    return _ansi_codes.sub(r"\4", s)
    else: # a bytestring
    return _ansi_codes_bytes.sub(r"\4", s)
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    return fmt.format(s)
    def _padnone(ignore_width, s):
    return s
    def _strip_ansi(s):
    if isinstance(s, str):
    return _ansi_codes.sub(r"\4", s)
    else: # a bytestring
    return _ansi_codes_bytes.sub(r"\4", s)
    # a bytestring
    return _ansi_codes_bytes.sub(r"\4", s)
    def _strip_ansi(s):
    if isinstance(s, str):
    return _ansi_codes.sub(r"\4", s)

    Comment on lines +285 to +303
    return _ansi_codes_bytes.sub(r"\4", s)


    def _visible_width(s):
    if wcwidth is not None and WIDE_CHARS_MODE:
    len_fn = wcwidth.wcswidth
    else:
    len_fn = len
    if isinstance(s, (str, bytes)):
    return len_fn(_strip_ansi(s))
    else:
    return len_fn(str(s))


    def _is_multiline(s):
    if isinstance(s, str):
    return bool(re.search(_multiline_codes, s))
    else: # a bytestring
    return bool(re.search(_multiline_codes_bytes, s))
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    return _ansi_codes_bytes.sub(r"\4", s)
    def _visible_width(s):
    if wcwidth is not None and WIDE_CHARS_MODE:
    len_fn = wcwidth.wcswidth
    else:
    len_fn = len
    if isinstance(s, (str, bytes)):
    return len_fn(_strip_ansi(s))
    else:
    return len_fn(str(s))
    def _is_multiline(s):
    if isinstance(s, str):
    return bool(re.search(_multiline_codes, s))
    else: # a bytestring
    return bool(re.search(_multiline_codes_bytes, s))
    return len_fn(str(s))
    # a bytestring
    return bool(re.search(_multiline_codes_bytes, s))
    if isinstance(s, (str, bytes)):
    return len_fn(_strip_ansi(s))
    def _is_multiline(s):
    if isinstance(s, str):
    return bool(re.search(_multiline_codes, s))

    Comment on lines +376 to +445


    def _align_column(
    strings,
    alignment,
    minwidth=0,
    has_invisible=True,
    enable_widechars=False,
    is_multiline=False,
    preserve_whitespace=False,
    ):
    strings, padfn = _align_column_choose_padfn(
    strings, alignment, has_invisible, preserve_whitespace
    )
    width_fn = _align_column_choose_width_fn(
    has_invisible, enable_widechars, is_multiline
    )

    s_widths = list(map(width_fn, strings))
    maxwidth = max(max(_flat_list(s_widths)), minwidth)
    # TODO: refactor column alignment in single-line and multiline modes
    if is_multiline:
    if not enable_widechars and not has_invisible:
    padded_strings = [
    "\n".join([padfn(maxwidth, s) for s in ms.splitlines()])
    for ms in strings
    ]
    else:
    # enable wide-character width corrections
    s_lens = [[len(s) for s in re.split("[\r\n]", ms)] for ms in strings]
    visible_widths = [
    [maxwidth - (w - l) for w, l in zip(mw, ml)]
    for mw, ml in zip(s_widths, s_lens)
    ]
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [
    "\n".join([padfn(w, s) for s, w in zip((ms.splitlines() or ms), mw)])
    for ms, mw in zip(strings, visible_widths)
    ]
    else: # single-line cell values
    if not enable_widechars and not has_invisible:
    padded_strings = [padfn(maxwidth, s) for s in strings]
    else:
    # enable wide-character width corrections
    s_lens = list(map(len, strings))
    visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)]
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)]
    return padded_strings


    def _more_generic(type1, type2):
    types = {
    type(None): 0,
    bool: 1,
    int: 2,
    float: 3,
    bytes: 4,
    str: 5,
    }
    invtypes = {
    5: str,
    4: bytes,
    3: float,
    2: int,
    1: bool,
    0: type(None),
    }
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    def _align_column(
    strings,
    alignment,
    minwidth=0,
    has_invisible=True,
    enable_widechars=False,
    is_multiline=False,
    preserve_whitespace=False,
    ):
    strings, padfn = _align_column_choose_padfn(
    strings, alignment, has_invisible, preserve_whitespace
    )
    width_fn = _align_column_choose_width_fn(
    has_invisible, enable_widechars, is_multiline
    )
    s_widths = list(map(width_fn, strings))
    maxwidth = max(max(_flat_list(s_widths)), minwidth)
    # TODO: refactor column alignment in single-line and multiline modes
    if is_multiline:
    if not enable_widechars and not has_invisible:
    padded_strings = [
    "\n".join([padfn(maxwidth, s) for s in ms.splitlines()])
    for ms in strings
    ]
    else:
    # enable wide-character width corrections
    s_lens = [[len(s) for s in re.split("[\r\n]", ms)] for ms in strings]
    visible_widths = [
    [maxwidth - (w - l) for w, l in zip(mw, ml)]
    for mw, ml in zip(s_widths, s_lens)
    ]
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [
    "\n".join([padfn(w, s) for s, w in zip((ms.splitlines() or ms), mw)])
    for ms, mw in zip(strings, visible_widths)
    ]
    else: # single-line cell values
    if not enable_widechars and not has_invisible:
    padded_strings = [padfn(maxwidth, s) for s in strings]
    else:
    # enable wide-character width corrections
    s_lens = list(map(len, strings))
    visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)]
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)]
    return padded_strings
    def _more_generic(type1, type2):
    types = {
    type(None): 0,
    bool: 1,
    int: 2,
    float: 3,
    bytes: 4,
    str: 5,
    }
    invtypes = {
    5: str,
    4: bytes,
    3: float,
    2: int,
    1: bool,
    0: type(None),
    }
    strings, padfn = _align_column_choose_padfn(strings, alignment, has_invisible, preserve_whitespace)
    width_fn = _align_column_choose_width_fn(has_invisible, enable_widechars, is_multiline)
    enable_widechars=False,
    padded_strings = [2025-03-31T20:57:26.923907489Z "\n".join([padfn(maxwidth, s) for s in ms.splitlines()]) for ms in strings]
    preserve_whitespace=False,
    ):
    visible_widths = [[maxwidth - (w - l) for w, l in zip(mw, ml)] for mw, ml in zip(s_widths, s_lens)]
    s_widths = list(map(width_fn, strings))
    elif not enable_widechars and not has_invisible:
    padded_strings = [padfn(maxwidth, s) for s in strings]
    else:
    # enable wide-character width corrections
    s_lens = list(map(len, strings))
    visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)]
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)]
    # enable wide-character width corrections
    s_lens = [[len(s) for s in re.split("[\r\n]", ms)] for ms in strings]
    types = {type(None): 0, bool: 1, int: 2, float: 3, bytes: 4, str: 5}
    invtypes = {5: str, 4: bytes, 3: float, 2: int, 1: bool, 0: type(None)}
    # wcswidth and _visible_width don't count invisible characters;
    # padfn doesn't need to apply another correction
    padded_strings = [
    "\n".join([padfn(w, s) for s, w in zip((ms.splitlines() or ms), mw)])
    for ms, mw in zip(strings, visible_widths)
    ]
    return padded_strings
    def _more_generic(type1, type2):

    Comment on lines +427 to +482


    def _more_generic(type1, type2):
    types = {
    type(None): 0,
    bool: 1,
    int: 2,
    float: 3,
    bytes: 4,
    str: 5,
    }
    invtypes = {
    5: str,
    4: bytes,
    3: float,
    2: int,
    1: bool,
    0: type(None),
    }
    moregeneric = max(types.get(type1, 5), types.get(type2, 5))
    return invtypes[moregeneric]


    def _column_type(strings, has_invisible=True, numparse=True):
    types = [_type(s, has_invisible, numparse) for s in strings]
    return reduce(_more_generic, types, bool)


    def _format(val, valtype, floatfmt, intfmt, missingval="", has_invisible=True):
    if val is None:
    return missingval
    if isinstance(val, (bytes, str)) and not val:
    return ""

    if valtype is str:
    return f"{val}"
    elif valtype is int:
    if isinstance(val, str):
    val_striped = val.encode("unicode_escape").decode("utf-8")
    colored = re.search(
    r"(\\[xX]+[0-9a-fA-F]+\[\d+[mM]+)([0-9.]+)(\\.*)$", val_striped
    )
    if colored:
    total_groups = len(colored.groups())
    if total_groups == 3:
    digits = colored.group(2)
    if digits.isdigit():
    val_new = (
    colored.group(1)
    + format(int(digits), intfmt)
    + colored.group(3)
    )
    val = val_new.encode("utf-8").decode("unicode_escape")
    intfmt = ""
    return format(val, intfmt)
    elif valtype is bytes:
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    def _more_generic(type1, type2):
    types = {
    type(None): 0,
    bool: 1,
    int: 2,
    float: 3,
    bytes: 4,
    str: 5,
    }
    invtypes = {
    5: str,
    4: bytes,
    3: float,
    2: int,
    1: bool,
    0: type(None),
    }
    moregeneric = max(types.get(type1, 5), types.get(type2, 5))
    return invtypes[moregeneric]
    def _column_type(strings, has_invisible=True, numparse=True):
    types = [_type(s, has_invisible, numparse) for s in strings]
    return reduce(_more_generic, types, bool)
    def _format(val, valtype, floatfmt, intfmt, missingval="", has_invisible=True):
    if val is None:
    return missingval
    if isinstance(val, (bytes, str)) and not val:
    return ""
    if valtype is str:
    return f"{val}"
    elif valtype is int:
    if isinstance(val, str):
    val_striped = val.encode("unicode_escape").decode("utf-8")
    colored = re.search(
    r"(\\[xX]+[0-9a-fA-F]+\[\d+[mM]+)([0-9.]+)(\\.*)$", val_striped
    )
    if colored:
    total_groups = len(colored.groups())
    if total_groups == 3:
    digits = colored.group(2)
    if digits.isdigit():
    val_new = (
    colored.group(1)
    + format(int(digits), intfmt)
    + colored.group(3)
    )
    val = val_new.encode("utf-8").decode("unicode_escape")
    intfmt = ""
    return format(val, intfmt)
    elif valtype is bytes:
    if valtype is int:
    colored = re.search(r"(\\[xX]+[0-9a-fA-F]+\[\d+[mM]+)([0-9.]+)(\\.*)$", val_striped)
    val_new = colored.group(1) + format(int(digits), intfmt) + colored.group(3)
    if valtype is bytes:
    return ""
    if valtype is str:
    return f"{val}"
    if isinstance(val, str):
    val_striped = val.encode("unicode_escape").decode("utf-8")
    if colored:
    total_groups = len(colored.groups())
    if total_groups == 3:
    digits = colored.group(2)
    if digits.isdigit():
    val = val_new.encode("utf-8").decode("unicode_escape")
    intfmt = ""
    return format(val, intfmt)

    Comment on lines +451 to +521
    types = [_type(s, has_invisible, numparse) for s in strings]
    return reduce(_more_generic, types, bool)


    def _format(val, valtype, floatfmt, intfmt, missingval="", has_invisible=True):
    if val is None:
    return missingval
    if isinstance(val, (bytes, str)) and not val:
    return ""

    if valtype is str:
    return f"{val}"
    elif valtype is int:
    if isinstance(val, str):
    val_striped = val.encode("unicode_escape").decode("utf-8")
    colored = re.search(
    r"(\\[xX]+[0-9a-fA-F]+\[\d+[mM]+)([0-9.]+)(\\.*)$", val_striped
    )
    if colored:
    total_groups = len(colored.groups())
    if total_groups == 3:
    digits = colored.group(2)
    if digits.isdigit():
    val_new = (
    colored.group(1)
    + format(int(digits), intfmt)
    + colored.group(3)
    )
    val = val_new.encode("utf-8").decode("unicode_escape")
    intfmt = ""
    return format(val, intfmt)
    elif valtype is bytes:
    try:
    return str(val, "ascii")
    except (TypeError, UnicodeDecodeError):
    return str(val)
    elif valtype is float:
    is_a_colored_number = has_invisible and isinstance(val, (str, bytes))
    if is_a_colored_number:
    raw_val = _strip_ansi(val)
    formatted_val = format(float(raw_val), floatfmt)
    return val.replace(raw_val, formatted_val)
    else:
    if isinstance(val, str) and "," in val:
    val = val.replace(",", "") # handle thousands-separators
    return format(float(val), floatfmt)
    else:
    return f"{val}"


    def _align_header(
    header, alignment, width, visible_width, is_multiline=False, width_fn=None
    ):
    "Pad string header to width chars given known visible_width of the header."
    if is_multiline:
    header_lines = re.split(_multiline_codes, header)
    padded_lines = [
    _align_header(h, alignment, width, width_fn(h)) for h in header_lines
    ]
    return "\n".join(padded_lines)
    # else: not multiline
    ninvisible = len(header) - visible_width
    width += ninvisible
    if alignment == "left":
    return _padright(width, header)
    elif alignment == "center":
    return _padboth(width, header)
    elif not alignment:
    return f"{header}"
    else:
    return _padleft(width, header)
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    types = [_type(s, has_invisible, numparse) for s in strings]
    return reduce(_more_generic, types, bool)
    def _format(val, valtype, floatfmt, intfmt, missingval="", has_invisible=True):
    if val is None:
    return missingval
    if isinstance(val, (bytes, str)) and not val:
    return ""
    if valtype is str:
    return f"{val}"
    elif valtype is int:
    if isinstance(val, str):
    val_striped = val.encode("unicode_escape").decode("utf-8")
    colored = re.search(
    r"(\\[xX]+[0-9a-fA-F]+\[\d+[mM]+)([0-9.]+)(\\.*)$", val_striped
    )
    if colored:
    total_groups = len(colored.groups())
    if total_groups == 3:
    digits = colored.group(2)
    if digits.isdigit():
    val_new = (
    colored.group(1)
    + format(int(digits), intfmt)
    + colored.group(3)
    )
    val = val_new.encode("utf-8").decode("unicode_escape")
    intfmt = ""
    return format(val, intfmt)
    elif valtype is bytes:
    try:
    return str(val, "ascii")
    except (TypeError, UnicodeDecodeError):
    return str(val)
    elif valtype is float:
    is_a_colored_number = has_invisible and isinstance(val, (str, bytes))
    if is_a_colored_number:
    raw_val = _strip_ansi(val)
    formatted_val = format(float(raw_val), floatfmt)
    return val.replace(raw_val, formatted_val)
    else:
    if isinstance(val, str) and "," in val:
    val = val.replace(",", "") # handle thousands-separators
    return format(float(val), floatfmt)
    else:
    return f"{val}"
    def _align_header(
    header, alignment, width, visible_width, is_multiline=False, width_fn=None
    ):
    "Pad string header to width chars given known visible_width of the header."
    if is_multiline:
    header_lines = re.split(_multiline_codes, header)
    padded_lines = [
    _align_header(h, alignment, width, width_fn(h)) for h in header_lines
    ]
    return "\n".join(padded_lines)
    # else: not multiline
    ninvisible = len(header) - visible_width
    width += ninvisible
    if alignment == "left":
    return _padright(width, header)
    elif alignment == "center":
    return _padboth(width, header)
    elif not alignment:
    return f"{header}"
    else:
    return _padleft(width, header)
    if isinstance(val, str) and "," in val:
    val = val.replace(",", "") # handle thousands-separators
    return format(float(val), floatfmt)
    def _align_header(header, alignment, width, visible_width, is_multiline=False, width_fn=None):
    """Pad string header to width chars given known visible_width of the header."""
    padded_lines = [_align_header(h, alignment, width, width_fn(h)) for h in header_lines]
    if alignment == "center":
    if not alignment:
    return _padleft(width, header)
    if is_a_colored_number:
    raw_val = _strip_ansi(val)
    formatted_val = format(float(raw_val), floatfmt)
    return val.replace(raw_val, formatted_val)
    else:
    return f"{val}"
    if is_multiline:
    header_lines = re.split(_multiline_codes, header)
    return "\n".join(padded_lines)
    # else: not multiline
    ninvisible = len(header) - visible_width
    width += ninvisible
    if alignment == "left":
    return _padright(width, header)
    return _padboth(width, header)
    return f"{header}"

    Comment on lines +663 to +732
    field_names = [field.name for field in dataclasses.fields(rows[0])]
    if headers == "keys":
    headers = field_names
    rows = [[getattr(row, f) for f in field_names] for row in rows]

    elif headers == "keys" and len(rows) > 0:
    # keys are column indices
    headers = list(map(str, range(len(rows[0]))))

    # take headers from the first row if necessary
    if headers == "firstrow" and len(rows) > 0:
    if index is not None:
    headers = [index[0]] + list(rows[0])
    index = index[1:]
    else:
    headers = rows[0]
    headers = list(map(str, headers)) # headers should be strings
    rows = rows[1:]
    elif headers == "firstrow":
    headers = []

    headers = list(map(str, headers))
    # rows = list(map(list, rows))
    rows = list(map(lambda r: r if _is_separating_line(r) else list(r), rows))

    # add or remove an index column
    showindex_is_a_str = type(showindex) in [str, bytes]
    if showindex == "never" or (not _bool(showindex) and not showindex_is_a_str):
    pass

    # pad with empty headers for initial columns if necessary
    headers_pad = 0
    if headers and len(rows) > 0:
    headers_pad = max(0, len(rows[0]) - len(headers))
    headers = [""] * headers_pad + headers

    return rows, headers, headers_pad

    def _to_str(s, encoding="utf8", errors="ignore"):
    if isinstance(s, bytes):
    return s.decode(encoding=encoding, errors=errors)
    return str(s)


    def tabulate(
    tabular_data,
    headers=(),
    tablefmt="simple",
    floatfmt=_DEFAULT_FLOATFMT,
    intfmt=_DEFAULT_INTFMT,
    numalign=_DEFAULT_ALIGN,
    stralign=_DEFAULT_ALIGN,
    missingval=_DEFAULT_MISSINGVAL,
    showindex="default",
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []

    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    field_names = [field.name for field in dataclasses.fields(rows[0])]
    if headers == "keys":
    headers = field_names
    rows = [[getattr(row, f) for f in field_names] for row in rows]
    elif headers == "keys" and len(rows) > 0:
    # keys are column indices
    headers = list(map(str, range(len(rows[0]))))
    # take headers from the first row if necessary
    if headers == "firstrow" and len(rows) > 0:
    if index is not None:
    headers = [index[0]] + list(rows[0])
    index = index[1:]
    else:
    headers = rows[0]
    headers = list(map(str, headers)) # headers should be strings
    rows = rows[1:]
    elif headers == "firstrow":
    headers = []
    headers = list(map(str, headers))
    # rows = list(map(list, rows))
    rows = list(map(lambda r: r if _is_separating_line(r) else list(r), rows))
    # add or remove an index column
    showindex_is_a_str = type(showindex) in [str, bytes]
    if showindex == "never" or (not _bool(showindex) and not showindex_is_a_str):
    pass
    # pad with empty headers for initial columns if necessary
    headers_pad = 0
    if headers and len(rows) > 0:
    headers_pad = max(0, len(rows[0]) - len(headers))
    headers = [""] * headers_pad + headers
    return rows, headers, headers_pad
    def _to_str(s, encoding="utf8", errors="ignore"):
    if isinstance(s, bytes):
    return s.decode(encoding=encoding, errors=errors)
    return str(s)
    def tabulate(
    tabular_data,
    headers=(),
    tablefmt="simple",
    floatfmt=_DEFAULT_FLOATFMT,
    intfmt=_DEFAULT_INTFMT,
    numalign=_DEFAULT_ALIGN,
    stralign=_DEFAULT_ALIGN,
    missingval=_DEFAULT_MISSINGVAL,
    showindex="default",
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []
    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    list_of_lists, headers, headers_pad = _normalize_tabular_data(tabular_data, headers, showindex=showindex)
    ):
    if tabular_data is None:
    tabular_data = []

    Comment on lines +705 to +778


    def tabulate(
    tabular_data,
    headers=(),
    tablefmt="simple",
    floatfmt=_DEFAULT_FLOATFMT,
    intfmt=_DEFAULT_INTFMT,
    numalign=_DEFAULT_ALIGN,
    stralign=_DEFAULT_ALIGN,
    missingval=_DEFAULT_MISSINGVAL,
    showindex="default",
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []

    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    list_of_lists, separating_lines = _remove_separating_lines(list_of_lists)

    # PrettyTable formatting does not use any extra padding.
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign

    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"

    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )

    has_invisible = _ansi_codes.search(plain_text) is not None

    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    def tabulate(
    tabular_data,
    headers=(),
    tablefmt="simple",
    floatfmt=_DEFAULT_FLOATFMT,
    intfmt=_DEFAULT_INTFMT,
    numalign=_DEFAULT_ALIGN,
    stralign=_DEFAULT_ALIGN,
    missingval=_DEFAULT_MISSINGVAL,
    showindex="default",
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []
    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    list_of_lists, separating_lines = _remove_separating_lines(list_of_lists)
    # PrettyTable formatting does not use any extra padding.
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign
    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"
    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )
    has_invisible = _ansi_codes.search(plain_text) is not None
    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    if not isinstance(tablefmt, TableFormat) and tablefmt in multiline_formats and _is_multiline(plain_text):
    has_invisible = _ansi_codes.search(plain_text) is not None
    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE

    Comment on lines +717 to +800
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []

    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    list_of_lists, separating_lines = _remove_separating_lines(list_of_lists)

    # PrettyTable formatting does not use any extra padding.
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign

    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"

    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )

    has_invisible = _ansi_codes.search(plain_text) is not None

    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)

    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    disable_numparse=False,
    colglobalalign=None,
    colalign=None,
    preserve_whitespace=False,
    maxcolwidths=None,
    headersglobalalign=None,
    headersalign=None,
    rowalign=None,
    maxheadercolwidths=None,
    ):
    if tabular_data is None:
    tabular_data = []
    list_of_lists, headers, headers_pad = _normalize_tabular_data(
    tabular_data, headers, showindex=showindex
    )
    list_of_lists, separating_lines = _remove_separating_lines(list_of_lists)
    # PrettyTable formatting does not use any extra padding.
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign
    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"
    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )
    has_invisible = _ansi_codes.search(plain_text) is not None
    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)
    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    float_formats = len(cols) * [floatfmt] # just duplicate the string to use in each column
    int_formats = len(cols) * [intfmt] # just duplicate the string to use in each column
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version

    Comment on lines +736 to +815
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign

    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"

    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )

    has_invisible = _ansi_codes.search(plain_text) is not None

    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)

    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    else: # if intfmt is list, tuple etc we have one per column
    int_formats = list(intfmt)
    if len(int_formats) < len(cols):
    int_formats.extend((len(cols) - len(int_formats)) * [_DEFAULT_INTFMT])
    if isinstance(missingval, str):
    missing_vals = len(cols) * [missingval]
    else:
    missing_vals = list(missingval)
    if len(missing_vals) < len(cols):
    missing_vals.extend((len(cols) - len(missing_vals)) * [_DEFAULT_MISSINGVAL])
    cols = [
    [_format(v, ct, fl_fmt, int_fmt, miss_v, has_invisible) for v in c]
    for c, ct, fl_fmt, int_fmt, miss_v in zip(
    cols, coltypes, float_formats, int_formats, missing_vals
    )
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    # Numbers are not parsed and are treated the same as strings for alignment.
    # Check if pretty is the format being used and override the defaults so it
    # does not impact other formats.
    min_padding = MIN_PADDING
    if tablefmt == "pretty":
    min_padding = 0
    disable_numparse = True
    numalign = "center" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "center" if stralign == _DEFAULT_ALIGN else stralign
    else:
    numalign = "decimal" if numalign == _DEFAULT_ALIGN else numalign
    stralign = "left" if stralign == _DEFAULT_ALIGN else stralign
    # 'colon_grid' uses colons in the line beneath the header to represent a column's
    # alignment instead of literally aligning the text differently. Hence,
    # left alignment of the data in the text output is enforced.
    if tablefmt == "colon_grid":
    colglobalalign = "left"
    headersglobalalign = "left"
    # optimization: look for ANSI control codes once,
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )
    has_invisible = _ansi_codes.search(plain_text) is not None
    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)
    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    else: # if intfmt is list, tuple etc we have one per column
    int_formats = list(intfmt)
    if len(int_formats) < len(cols):
    int_formats.extend((len(cols) - len(int_formats)) * [_DEFAULT_INTFMT])
    if isinstance(missingval, str):
    missing_vals = len(cols) * [missingval]
    else:
    missing_vals = list(missingval)
    if len(missing_vals) < len(cols):
    missing_vals.extend((len(cols) - len(missing_vals)) * [_DEFAULT_MISSINGVAL])
    cols = [
    [_format(v, ct, fl_fmt, int_fmt, miss_v, has_invisible) for v in c]
    for c, ct, fl_fmt, int_fmt, miss_v in zip(
    cols, coltypes, float_formats, int_formats, missing_vals
    )
    for c, ct, fl_fmt, int_fmt, miss_v in zip(cols, coltypes, float_formats, int_formats, missing_vals)
    if len(missing_vals) < len(cols):
    missing_vals.extend((len(cols) - len(missing_vals)) * [_DEFAULT_MISSINGVAL])
    cols = [
    [_format(v, ct, fl_fmt, int_fmt, miss_v, has_invisible) for v in c]

    Comment on lines +757 to +855
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )

    has_invisible = _ansi_codes.search(plain_text) is not None

    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)

    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    else: # if intfmt is list, tuple etc we have one per column
    int_formats = list(intfmt)
    if len(int_formats) < len(cols):
    int_formats.extend((len(cols) - len(int_formats)) * [_DEFAULT_INTFMT])
    if isinstance(missingval, str):
    missing_vals = len(cols) * [missingval]
    else:
    missing_vals = list(missingval)
    if len(missing_vals) < len(cols):
    missing_vals.extend((len(cols) - len(missing_vals)) * [_DEFAULT_MISSINGVAL])
    cols = [
    [_format(v, ct, fl_fmt, int_fmt, miss_v, has_invisible) for v in c]
    for c, ct, fl_fmt, int_fmt, miss_v in zip(
    cols, coltypes, float_formats, int_formats, missing_vals
    )
    ]

    # align columns
    # first set global alignment
    if colglobalalign is not None: # if global alignment provided
    aligns = [colglobalalign] * len(cols)
    else: # default
    aligns = [numalign if ct in [int, float] else stralign for ct in coltypes]
    # then specific alignments
    if colalign is not None:
    assert isinstance(colalign, Iterable)
    if isinstance(colalign, str):
    warnings.warn(
    f"As a string, `colalign` is interpreted as {[c for c in colalign]}. "
    f'Did you mean `colglobalalign = "{colalign}"` or `colalign = ("{colalign}",)`?',
    stacklevel=2,
    )
    for idx, align in enumerate(colalign):
    if not idx < len(aligns):
    break
    elif align != "global":
    aligns[idx] = align
    minwidths = (
    [width_fn(h) + min_padding for h in headers] if headers else [0] * len(cols)
    )
    aligns_copy = aligns.copy()
    # Reset alignments in copy of alignments list to "left" for 'colon_grid' format,
    # which enforces left alignment in the text output of the data.
    if tablefmt == "colon_grid":
    aligns_copy = ["left"] * len(cols)
    cols = [
    _align_column(
    c,
    a,
    minw,
    has_invisible,
    enable_widechars,
    is_multiline,
    preserve_whitespace,
    )
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    ⚡️Codeflash found 31% (0.31x) speedup for _pipe_line_with_colons

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    📝 Explanation and details

    To make the given Python program faster, we can improve the performance of the _pipe_line_with_colons function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.

    Explanation of Changes.

    1. Reduce Function Calls within Loops: By directly including the logic from _pipe_segment_with_colons within the loop in _pipe_line_with_colons, we avoid the overhead of repeatedly calling the _pipe_segment_with_colons function.
    2. Optimize List Construction: We merged the list comprehension into a standard for loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. Optimize Condition Check: Simplified the alignment checks by directly comparing the align variable instead of storing and passing it around. This reduces the memory overhead.

    This will result in decreased execution time particularly when processing larger tables.

    Correctness verification report:

    Test Status
    ?????? Existing Unit Tests 🔘 None Found
    ???? Inspired Regression Tests 🔘 None Found
    ???? Generated Regression Tests 39 Passed
    ??? Replay Tests 🔘 None Found
    ???? Concolic Coverage Tests 🔘 None Found
    📊 Tests Coverage undefined
    ???? Generated Regression Tests Details
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality Tests
    def test_single_column_default_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_multiple_columns_default_alignment():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["", "", ""])
    
    # Specific Alignments Tests
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Mixed Alignments Tests
    def test_multiple_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([3, 4, 5], ["left", "center", "right"])
        codeflash_output = _pipe_line_with_colons([6, 7, 8], ["right", "decimal", "left"])
    
    # Edge Cases Tests
    def test_empty_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_empty_colaligns_with_non_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([3, 4], [])
    
    def test_non_empty_colaligns_with_empty_colwidths():
        codeflash_output = _pipe_line_with_colons([], ["left", "right"])
    
    def test_mismatched_lengths_of_colwidths_and_colaligns():
        codeflash_output = _pipe_line_with_colons([3, 4], ["left"])
        codeflash_output = _pipe_line_with_colons([3], ["left", "right"])
    
    # Large Scale Test Cases
    def test_large_number_of_columns():
        codeflash_output = _pipe_line_with_colons([5] * 1000, ["left"] * 1000)
        codeflash_output = _pipe_line_with_colons([3, 4, 5] * 1000, ["left", "center", "right"] * 1000)
    
    def test_wide_columns():
        codeflash_output = _pipe_line_with_colons([100], ["center"])
        codeflash_output = _pipe_line_with_colons([200], ["right"])
    
    # Performance and Scalability Tests
    def test_performance_with_large_data_samples():
        codeflash_output = _pipe_line_with_colons([10] * 10000, ["right"] * 10000)
        codeflash_output = _pipe_line_with_colons([1, 2, 3, 4, 5] * 2000, ["left", "center", "right", "decimal", ""] * 2000)
    
    # Special Characters in Alignment Tests
    def test_special_characters_in_colaligns():
        codeflash_output = _pipe_line_with_colons([5], ["unknown"])
        codeflash_output = _pipe_line_with_colons([3, 4], ["left", "unknown"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
    
    import re
    from collections import namedtuple
    
    # imports
    import pytest  # used for our unit tests
    import wcwidth
    from codeflash.code_utils.tabulate import _pipe_line_with_colons
    
    # unit tests
    
    # Basic Functionality
    def test_single_column_no_alignment():
        codeflash_output = _pipe_line_with_colons([5], [""])
    
    def test_single_column_left_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["left"])
    
    def test_single_column_center_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["center"])
    
    def test_single_column_right_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["right"])
    
    def test_single_column_decimal_alignment():
        codeflash_output = _pipe_line_with_colons([5], ["decimal"])
    
    # Multiple Columns with Different Alignments
    def test_two_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["left", "right"])
    
    def test_three_columns_mixed_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["center", "decimal", "left"])
    
    # Edge Cases
    def test_empty_column_widths_and_alignments():
        codeflash_output = _pipe_line_with_colons([], [])
    
    def test_column_widths_without_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [])
    
    def test_column_widths_with_empty_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["", ""])
    
    def test_column_widths_with_partial_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7, 3], ["left", ""])
    
    # Large Scale Test Cases
    def test_large_number_of_columns_uniform():
        colwidths = [5] * 1000
        colaligns = ["right"] * 1000
        expected_output = "|" + "|".join(["----:"] * 1000) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    def test_large_number_of_columns_mixed():
        colwidths = [3, 5, 7] * 333 + [3]
        colaligns = ["left", "center", "right"] * 333 + ["decimal"]
        expected_output = "|" + "|".join([":--", ":---:", "------:"] * 333 + ["--:"]) + "|"
        codeflash_output = _pipe_line_with_colons(colwidths, colaligns)
    
    # Invalid Inputs (Assuming Function Should Handle Gracefully)
    def test_negative_column_widths():
        codeflash_output = _pipe_line_with_colons([-5, 7], ["left", "right"])
    
    
    def test_non_string_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [None, "right"])
    
    # Mixed Data Types in Alignments
    def test_integers_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [1, "right"])
    
    def test_booleans_and_strings_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], [True, "right"])
    
    # Special Characters in Alignments
    def test_special_characters_in_alignments():
        codeflash_output = _pipe_line_with_colons([5, 7], ["#", "right"])
    # codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

    To test or edit this optimization locally git merge codeflash/optimize-pr35-2025-04-01T22.53.38

    Suggested change
    # enable smart width functions only if a control code is found
    #
    # convert the headers and rows into a single, tab-delimited string ensuring
    # that any bytestrings are decoded safely (i.e. errors ignored)
    plain_text = "\t".join(
    chain(
    # headers
    map(_to_str, headers),
    # rows: chain the rows together into a single iterable after mapping
    # the bytestring conversino to each cell value
    chain.from_iterable(map(_to_str, row) for row in list_of_lists),
    )
    )
    has_invisible = _ansi_codes.search(plain_text) is not None
    enable_widechars = wcwidth is not None and WIDE_CHARS_MODE
    if (
    not isinstance(tablefmt, TableFormat)
    and tablefmt in multiline_formats
    and _is_multiline(plain_text)
    ):
    tablefmt = multiline_formats.get(tablefmt, tablefmt)
    is_multiline = True
    else:
    is_multiline = False
    width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline)
    # format rows and columns, convert numeric values to strings
    cols = list(izip_longest(*list_of_lists))
    numparses = _expand_numparse(disable_numparse, len(cols))
    coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)]
    if isinstance(floatfmt, str): # old version
    float_formats = len(cols) * [
    floatfmt
    ] # just duplicate the string to use in each column
    else: # if floatfmt is list, tuple etc we have one per column
    float_formats = list(floatfmt)
    if len(float_formats) < len(cols):
    float_formats.extend((len(cols) - len(float_formats)) * [_DEFAULT_FLOATFMT])
    if isinstance(intfmt, str): # old version
    int_formats = len(cols) * [
    intfmt
    ] # just duplicate the string to use in each column
    else: # if intfmt is list, tuple etc we have one per column
    int_formats = list(intfmt)
    if len(int_formats) < len(cols):
    int_formats.extend((len(cols) - len(int_formats)) * [_DEFAULT_INTFMT])
    if isinstance(missingval, str):
    missing_vals = len(cols) * [missingval]
    else:
    missing_vals = list(missingval)
    if len(missing_vals) < len(cols):
    missing_vals.extend((len(cols) - len(missing_vals)) * [_DEFAULT_MISSINGVAL])
    cols = [
    [_format(v, ct, fl_fmt, int_fmt, miss_v, has_invisible) for v in c]
    for c, ct, fl_fmt, int_fmt, miss_v in zip(
    cols, coltypes, float_formats, int_formats, missing_vals
    )
    ]
    # align columns
    # first set global alignment
    if colglobalalign is not None: # if global alignment provided
    aligns = [colglobalalign] * len(cols)
    else: # default
    aligns = [numalign if ct in [int, float] else stralign for ct in coltypes]
    # then specific alignments
    if colalign is not None:
    assert isinstance(colalign, Iterable)
    if isinstance(colalign, str):
    warnings.warn(
    f"As a string, `colalign` is interpreted as {[c for c in colalign]}. "
    f'Did you mean `colglobalalign = "{colalign}"` or `colalign = ("{colalign}",)`?',
    stacklevel=2,
    )
    for idx, align in enumerate(colalign):
    if not idx < len(aligns):
    break
    elif align != "global":
    aligns[idx] = align
    minwidths = (
    [width_fn(h) + min_padding for h in headers] if headers else [0] * len(cols)
    )
    aligns_copy = aligns.copy()
    # Reset alignments in copy of alignments list to "left" for 'colon_grid' format,
    # which enforces left alignment in the text output of the data.
    if tablefmt == "colon_grid":
    aligns_copy = ["left"] * len(cols)
    cols = [
    _align_column(
    c,
    a,
    minw,
    has_invisible,
    enable_widechars,
    is_multiline,
    preserve_whitespace,
    )
    if align != "global":
    minwidths = [width_fn(h) + min_padding for h in headers] if headers else [0] * len(cols)
    if tab2025-03-31T20:57:26.923907489Z lefmt == "colon_grid":
    _align_column(c, a, minw, has_invisible, enable_widechars, is_multiline, preserve_whitespace)
    )
    for idx, align in enumerate(colalign):
    if not idx < len(aligns):
    break
    aligns[idx] = align
    aligns_copy = aligns.copy()
    # Reset alignments in copy of alignments list to "left" for 'colon_grid' format,
    # which enforces left alignment in the text output of the data.
    aligns_copy = ["left"] * len(cols)
    cols = [

    codeflash-ai bot added a commit that referenced this pull request Apr 1, 2025
    …-profiler`)
    
    To make the given Python program faster, we can improve the performance of the `_pipe_line_with_colons` function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.
    
    
    
    ### Explanation of Changes.
    1. **Reduce Function Calls within Loops**: By directly including the logic from `_pipe_segment_with_colons` within the loop in `_pipe_line_with_colons`, we avoid the overhead of repeatedly calling the `_pipe_segment_with_colons` function.
    2. **Optimize List Construction**: We merged the list comprehension into a standard `for` loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. **Optimize Condition Check**: Simplified the alignment checks by directly comparing the `align` variable instead of storing and passing it around. This reduces the memory overhead.
    
    This will result in decreased execution time particularly when processing larger tables.
    return arr.sort()
    """
    assert code_write_path.read_text("utf-8") == expected_code_main
    finally:
    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    restore the code ?

    Copy link
    Contributor Author

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    it's a temp file

    codeflash-ai bot added a commit that referenced this pull request Apr 1, 2025
    …filer`)
    
    To optimize the given Python program, we need to analyze the line profiling results and identify the most time-consuming parts of the code. Based on the profiling data, the most significant time spent is on `module.visit(transformer)` and `cst.parse_module(original_code)`.
    
    1. `cst.parse_module(original_code)` - This line is responsible for parsing the original code string into a CST node. It is crucial and necessary, but we can ensure that the input `original_code` is optimized and minimized before parsing.
    2. `module.visit(transformer)` - The visit method traverses the CST and applies transformations. The transformation itself needs to be examined and potentially optimized to reduce time complexity.
    
    Since the given code itself is tight and straightforward, optimization will focus on ensuring efficiency in the transformations made by `ProfileEnableTransformer`. However, without details about the implementation of `ProfileEnableTransformer`, we can suggest general strategies.
    
    - Minimize passes over the CST nodes by combining transformations where possible.
    - Optimize the transformation logic within `ProfileEnableTransformer`.
     assuming these transformers and parsers perform minimal redundant operations.
    
    
    
    In the rewritten code.
    
    1. `has_transformable_content` is introduced to quickly check if the transformation is even needed before proceeding with the heavier operations. This can save time if most of the files do not need transformation.
    2. The original code is verified for being non-empty.
    3. The `ProfileEnableTransformer` logic is stubbed for simplicity, assuming the key operations are optimized.
    
    To further optimize, you'd need to inspect and optimize the `ProfileEnableTransformer` itself based on the specific transformations applied to the CST nodes.
    Copy link
    Contributor

    codeflash-ai bot commented Apr 1, 2025

    ⚡️ Codeflash found optimizations for this PR

    📄 17% (0.17x) speedup for add_profile_enable in codeflash/code_utils/line_profile_utils.py

    ⏱️ Runtime : 227 milliseconds 194 milliseconds (best of 44 runs)

    I created a new dependent PR with the suggested changes. Please review:

    If you approve, it will be merged into this PR (branch line-profiler).

    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    #104 (review)
    fits here.

    Copy link
    Contributor Author

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    my understanding is that 'rich' somehow prints to the console even when we want to get a string out and we might have word wrapping issues with different console sizes

    Copy link
    Contributor

    Choose a reason for hiding this comment

    The reason will be displayed to describe this comment to others. Learn more.

    rich handles all of this yes. it will word wrap, adjust to the console etc etc

    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    @codeflash-ai codeflash-ai deleted a comment from codeflash-ai bot Apr 2, 2025
    codeflash-ai bot added a commit that referenced this pull request Apr 2, 2025
    …-profiler`)
    
    To make the given Python program faster, we can improve the performance of the `_pipe_line_with_colons` function by avoiding repeated creation of temporary lists in the list comprehension and minimizing function calls within loops. Here's a rewritten version.
    
    
    
    ### Explanation of Changes.
    1. **Reduce Function Calls within Loops**: By directly including the logic from `_pipe_segment_with_colons` within the loop in `_pipe_line_with_colons`, we avoid the overhead of repeatedly calling the `_pipe_segment_with_colons` function.
    2. **Optimize List Construction**: We merged the list comprehension into a standard `for` loop, which makes the logic clearer and avoids temporary list creation overhead in an intermediate step.
    3. **Optimize Condition Check**: Simplified the alignment checks by directly comparing the `align` variable instead of storing and passing it around. This reduces the memory overhead.
    
    This will result in decreased execution time particularly when processing larger tables.
    Copy link
    Contributor

    codeflash-ai bot commented Apr 2, 2025

    ⚡️ Codeflash found optimizations for this PR

    📄 31% (0.31x) speedup for _pipe_line_with_colons in codeflash/code_utils/tabulate.py

    ⏱️ Runtime : 4.35 milliseconds 3.33 milliseconds (best of 215 runs)

    I created a new dependent PR with the suggested changes. Please review:

    If you approve, it will be merged into this PR (branch line-profiler).

    codeflash-ai bot added a commit that referenced this pull request Apr 2, 2025
    …ine-profiler`)
    
    To optimize the function `_pipe_segment_with_colons` for faster execution, we can simplify the logic by reducing string concatenations and condition checks. Let's rewrite the function.
    
    
    
    Changes made.
    1. Used f-strings for simpler and potentially faster string formatting.
    2. Combined the checks for `right` and `decimal` alignments to reduce redundant checks and increase branch prediction efficiency.
    
    The core logic and return values remain the same, while the function should perform faster due to simplified string operations and fewer condition checks.
    @misrasaurabh1
    Copy link
    Contributor

    @aseembits93 is this ready to merge now?

    @aseembits93
    Copy link
    Contributor Author

    @misrasaurabh1 ready to merge

    @misrasaurabh1 misrasaurabh1 merged commit f54c1ad into main Apr 2, 2025
    14 of 15 checks passed
    Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
    Projects
    None yet
    Development

    Successfully merging this pull request may close these issues.

    4 participants