Learn the fundamental techniques for analyzing time-series data with Python, MongoDB, PyMongo, Pandas, & Matplotlib
References
- Blog post (coming soon)
- Video (coming soon)
Prerequisites
- Python 3.8+ Installed
- Docker Desktop Installed (for local MongoDB instance)
- Terminal or PowerShell experience
- Make a project directory
mkdir -p ~/dev/ts-pymongo
cd ~/dev/ts-pymongo
- Clone this repo:
git clone https://github.com/codingforentrepreneurs/time-series-mongodb-pymongo .
- Make and activate a virtual environment:
python3.10 -m venv venv
macOS/Linux activation
source venv/bin/activate
Windows activation
./venv/Scripts/activate
- Upgrade Virtual Environment Pip
(venv) python -m pip install pip --upgrade
- Move
src/example.env
tosrc/.env
mv src/example.env src/.env
- Change
MONGO_INITDB_ROOT_PASSWORD
in.env
Create a new password with:
(venv) python -c "import secrets;print(secrets.token_urlsafe(32))"
So .env
looks like:
MONGO_INITDB_ROOT_USERNAME="root"
MONGO_INITDB_ROOT_PASSWORD="wlke0lL-v7FkGFn5Cl0brfxHJqhDPImBmg-MRfCIXx4"
- Install requirements
(venv) python -m pip install -r src/requirements.txt
- Run Docker Compose Don't have docker? Install Docker Desktop
cd ~/dev/ts-pymongo
docker compose up
- Checkout the Final Results
If you want to see the final code changes, checkout the
final
branch.
git checkout final