Are you looking to streamline your data visualization process with matplotlib? Enter matplotlib-visualizer
- a cutting-edge tool designed to simplify graph generation through natural language commands. By leveraging OpenAI's GPT API, innovative prompt engineering techniques, and employing few-shot learning capabilities, matplotlib-visualizer
eliminates the need for manual matplotlib
coding.
Import matplotlib-visualizer
via pip:
pip install pip install matplotlib-visualizer==1.0
Imagine we have a dataset data
featuring four distinct curves labeled 'a'
, 'b'
, 'c'
, and 'd'
:
import numpy as np
data = {'a': [...], # Specify the data for curve 'a'
'b': [...], # Specify the data for curve 'b'
'c': [...], # Specify the data for curve 'c'
'd': [...]} # Specify the data for curve 'd'
In a typical scenario where each curve needs to be plotted with specific styling and a customized title, conventional matplotlib
code might look like this:
import matplotlib.pyplot as plt
plt.plot(data['a'], linestyle='dashed', label='a')
plt.plot(data['b'], label='b')
plt.plot(data['c'], label='c')
plt.plot(data['d'], label='d')
plt.title('Custom Graph Title')
plt.legend()
plt.show()
On the other hand, leveraging the intuitive functionality of matplotlib-visualizer
, accomplishing the same task is simplified:
from matplotlib-visualizer.matplotlib-visualizer import matplotlib-visualizer
mpl_viz = matplotlib-visualizer("YOUR-OPENAI-API-KEY")
prompt = "Generate a graph for each curve in the dataset and title it 'Custom Graph Title'. Set curve 'a' as a dashed line."
generated_code = mpl_viz(prompt)
Inspect the code output through:
print(generated_code) # Display the GPT-generated code
Continually evolving, this project aims to enhance and expand its capabilities over time. Thank you for considering matplotlib-visualizer
for your data visualization endeavors.