An MCP (Model Context Protocol) server for simulating DNA and amino acid sequences using various evolutionary models and algorithms. This server provides powerful tools for sequence generation, mutation simulation, evolutionary modeling, and phylogenetic analysis.
- Random DNA Generation: Generate sequences with specified GC content
- Markov Chain Models: Context-dependent sequence generation
- Codon-Biased Generation: Realistic protein-coding sequences
- Customizable Parameters: Length, GC content, seed for reproducibility
- NGS Read Simulation: Generate realistic next-generation sequencing reads
- Platform-Specific Models: Illumina, 454, Ion Torrent, and PacBio quality models
- Paired-End Support: Both single-end and paired-end sequencing reads
- Error Modeling: Configurable sequencing error rates with realistic quality scores
- Coverage Control: Generate reads to achieve specified coverage depths
- NEAT-Based: Implementation inspired by published NEAT methodology
- Random Protein Generation: Uniform amino acid distribution
- Hydrophobic-Biased: Membrane protein-like sequences
- Disorder-Prone: Intrinsically disordered protein sequences
- Custom Composition: User-defined amino acid frequencies
- Substitution Mutations: Point mutations with transition/transversion bias
- Insertion/Deletion Events: Indel mutations
- Multiple Iterations: Track changes over time
- Both DNA and Protein: Support for nucleotide and amino acid sequences
- Population Evolution: Simulate populations over generations
- Selection Pressure: Configurable fitness functions
- Lineage Tracking: Follow individual evolutionary paths
- Fitness Functions: GC content, length, hydrophobicity targets
- Tree-Based Evolution: Simulate sequences on phylogenetic trees
- Multiple Substitution Models: JC69, K80, HKY85, GTR
- Molecular Clock: Uniform or variable evolutionary rates
- Multiple Output Formats: FASTA, NEXUS, PHYLIP
npm install
npm run build
./start-claude.sh
Add to your Claude Code MCP configuration:
{
"mcpServers": {
"sequence-simulation": {
"command": "node",
"args": ["dist/server.js"],
"cwd": "/path/to/mcp-sequence-simulation"
}
}
}
Generate random DNA sequences with various models.
Parameters:
length
(required): Sequence lengthgcContent
(optional): GC content ratio (0-1, default: 0.5)count
(optional): Number of sequences (default: 1)model
(optional): "random", "markov", or "codon-biased"seed
(optional): Random seed for reproducibilityoutputFormat
(optional): "fasta" or "plain"
Example:
{
"length": 1000,
"gcContent": 0.6,
"count": 5,
"model": "markov",
"outputFormat": "fasta"
}
Generate random protein sequences with various biases.
Parameters:
length
(required): Sequence lengthcount
(optional): Number of sequences (default: 1)model
(optional): "random", "hydrophobic-bias", or "disorder-prone"composition
(optional): Custom amino acid frequenciesseed
(optional): Random seedoutputFormat
(optional): "fasta" or "plain"
Example:
{
"length": 200,
"count": 3,
"model": "hydrophobic-bias",
"outputFormat": "fasta"
}
Simulate FASTQ sequencing reads with realistic quality scores and error models.
Parameters:
referenceSequence
(required): Reference DNA sequence to generate reads fromreadLength
(required): Length of each sequencing read (50-300 bp)coverage
(required): Target sequencing coverage depth (1-1000x)readType
(optional): "single-end" or "paired-end" (default: "single-end")insertSize
(optional): Mean insert size for paired-end reads (default: 300)insertSizeStd
(optional): Standard deviation of insert size (default: 50)errorRate
(optional): Base calling error rate 0-0.1 (default: 0.01)qualityModel
(optional): "illumina", "454", "ion-torrent", or "pacbio" (default: "illumina")mutationRate
(optional): Rate of true mutations 0-0.05 (default: 0.001)seed
(optional): Random seed for reproducibilityoutputFormat
(optional): "fastq" or "json" (default: "fastq")
Example:
{
"referenceSequence": "ATCGATCGATCGATCGATCGATCGATCGATCGATCG",
"readLength": 150,
"coverage": 30,
"readType": "paired-end",
"errorRate": 0.01,
"qualityModel": "illumina"
}
Citation: Based on Stephens et al. (2016) PLOS ONE 11(11): e0167047.
Apply mutations to existing sequences.
Parameters:
sequence
(required): Input sequencesequenceType
(required): "dna" or "protein"substitutionRate
(optional): Substitution rate (default: 0.01)insertionRate
(optional): Insertion rate (default: 0.001)deletionRate
(optional): Deletion rate (default: 0.001)transitionBias
(optional): Transition vs transversion bias for DNA (default: 2.0)iterations
(optional): Number of mutation rounds (default: 1)seed
(optional): Random seedoutputFormat
(optional): "fasta" or "plain"
Example:
{
"sequence": "ATGCGATCGATCG",
"sequenceType": "dna",
"substitutionRate": 0.02,
"iterations": 5,
"outputFormat": "fasta"
}
Simulate sequence evolution over multiple generations.
Parameters:
sequence
(required): Starting sequencegenerations
(required): Number of generationspopulationSize
(required): Population sizemutationRate
(required): Mutation rate per generationselectionPressure
(optional): Selection strength (0-1)fitnessFunction
(optional): "gc-content", "length", "hydrophobic", or "custom"targetValue
(optional): Target value for fitness functiontrackLineages
(optional): Track individual lineagesseed
(optional): Random seedoutputFormat
(optional): "summary", "detailed", or "fasta"
Example:
{
"sequence": "ATGCGATCGATCG",
"generations": 100,
"populationSize": 50,
"mutationRate": 0.01,
"selectionPressure": 0.3,
"fitnessFunction": "gc-content",
"targetValue": 0.5,
"outputFormat": "detailed"
}
Simulate sequence evolution on phylogenetic trees.
Parameters:
rootSequence
(required): Ancestral sequencetreeStructure
(optional): Newick format tree or "random"numTaxa
(optional): Number of taxa for random tree (default: 5)mutationRate
(optional): Mutation rate per branch length (default: 0.1)branchLengthVariation
(optional): Branch length variation (default: 0.2)molecularClock
(optional): Use molecular clock (default: true)substitutionModel
(optional): "JC69", "K80", "HKY85", or "GTR"seed
(optional): Random seedoutputFormat
(optional): "fasta", "nexus", or "phylip"
Example:
{
"rootSequence": "ATGCGATCGATCGATCG",
"numTaxa": 8,
"mutationRate": 0.05,
"substitutionModel": "K80",
"outputFormat": "nexus"
}
Standard FASTA format with descriptive headers containing simulation parameters.
All tools provide detailed statistics including:
- Sequence composition analysis
- Mutation counts and types
- Evolutionary parameters
- Phylogenetic tree statistics
- NEXUS: For phylogenetic analysis software
- PHYLIP: For phylogenetic analysis
- JSON: Structured data with full simulation details
- Molecular Evolution Studies: Simulate sequence evolution under different models
- Phylogenetic Analysis: Generate test datasets with known evolutionary history
- Algorithm Testing: Create benchmark datasets for bioinformatics tools
- Educational Purposes: Demonstrate evolutionary principles
- Algorithm Validation: Test sequence analysis tools with controlled data
- Statistical Analysis: Generate null distributions for statistical tests
- Performance Benchmarking: Create datasets of varying complexity
- Method Comparison: Compare tools on simulated vs real data
- Jukes-Cantor (JC69): Equal substitution rates
- Kimura 2-Parameter (K80): Transition/transversion bias
- HKY85: Unequal base frequencies with transition bias
- GTR: General time-reversible model
- Markov Chains: Context-dependent nucleotide selection
- Codon Usage Bias: Realistic protein-coding sequences
- Amino Acid Properties: Hydrophobicity and disorder propensity
- Point Mutations: Single nucleotide/amino acid changes
- Indels: Insertion and deletion events
- Transition Bias: Realistic DNA mutation patterns
- @modelcontextprotocol/sdk: MCP framework
- zod: Schema validation
- typescript: Type safety
- Node.js: Runtime environment
This server provides a comprehensive framework for sequence simulation. Extensions could include:
- Additional substitution models
- Recombination simulation
- Population genetics models
- Structural constraints
- Codon usage tables for different organisms
See LICENSE file for details.