#### Motivation As shown in [TensorFlow's compatibility matrix](https://www.tensorflow.org/install/source#gpu), different versions of TensorFlow rely on different versions of CUDA. The same is true for Pytorch. #### Solution Build multiple versions of `python-gpu-slim`: ```yaml cortexlabs/python-predictor-gpu-slim:<cortex_version>-cuda10.0 cortexlabs/python-predictor-gpu-slim:<cortex_version>-cuda10.1 cortexlabs/python-predictor-gpu-slim:<cortex_version>-cuda10.2 cortexlabs/python-predictor-gpu-slim:<cortex_version>-cuda11.0 ``` And for the full version of the image `python-gpu`: ```yaml cortexlabs/python-predictor-gpu:<cortex_version> ``` Here is an example of using a Docker build arg: ```dockerfile ARG CUDA_VERSION=10.1 FROM nvidia/cuda:$CUDA_VERSION-cudnn7-devel-ubuntu18.04 ```