Skip to content

good code is simple. Implement Various DeepLearning Algorithms such as VAE, MC Dropout, Grad-CAM, Object Detection, Semantic Segmentation and so on

Notifications You must be signed in to change notification settings

craftsangjae/deeplearning-dojo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

header

Objective

Code Kata is defined as an exercise in programming which helps hone our skill through practice and repetition. In machine learning programming, Code Kata for implementing ML algorithms is very important, becuase we can realize the details ( such as Data Sampling, Weight initialization, various training strategy ...) while implementing the algorithm.

I implement various algorithms using in Deep Learning and organize them into scripts.. I'll update one script each week.

If you have a good topic, feel free to leave it on the issue! I will try to implement it as much as possible!

How to do the Code Kada together? (set-up environment)

Do not worry! I provide the environment written as a docker image.

# Run it From the root project directory
docker-compose up -d

Deep-Learning Katas List


Goals

  • Implement a simple Deep Learning Model Handling variables by Embedding Layer
  • Acheive Accuracy similar to that of a Random Forest Classifier

Dataset


Goals

  • Implement Maxout Activation Layer using Keras custom Layer
  • Check the performance by learning fashion-MNIST

Dataset

  • Fashion-MNIST

papers


Goals

  • Implement two methods to interpret the output of CNN

  • Algorithm implementation based on the operation of Resnet50v2

papers


Goals

  • Implement CRNN, Deep Learing Model for reading text in images.

Datasets

  • synthetic dataset using MNIST

Papers


Goals

  • Implement Shake-Shake Regularization which directly applies noise inside the Deep Learning Model

Datasets

  • CIFAR-10

Papers

CopyRight CC BY-SA 4.0

This repository is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

CC BY-SA 4.0

About

good code is simple. Implement Various DeepLearning Algorithms such as VAE, MC Dropout, Grad-CAM, Object Detection, Semantic Segmentation and so on

Topics

Resources

Stars

Watchers

Forks