Skip to content

❗ This is a read-only mirror of the CRAN R package repository. CopernicusClimate — Search Download and Handle Data from Copernicus Climate Data Service. Homepage: https://pepijn-devries.github.io/CopernicusClimate/https://github.com/pepijn-devries/CopernicusClimate/ Report bugs for this package: https:/ ...

Notifications You must be signed in to change notification settings

cran/CopernicusClimate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CopernicusClimate logo

R-CMD-check CopernicusClimate status badge Codecov test coverage

Overview

The Copernicus Climate Change Service (C3S) has the mission of providing information about the past, present and future climate, as well as tools to enable climate change mitigation and adaptation strategies.

The C3S Climate Data Store provides open and state-of-the-art climate data to scientists. This package allows users to download data from the data store and handle it in R.

Installation

Install latest developmental version from R-Universe:

install.packages("CopernicusClimate", repos = c('https://pepijn-devries.r-universe.dev', 'https://cloud.r-project.org'))

Example

In order to download data from C3S you first need to submit a request with cds_submit_job(). After your request has been processed by C3S, you can download the data with cds_download_jobs(). This workflow is demonstrated in the code snippet below. For a more detailed description of the workflow see vignette("download").

library(CopernicusClimate)
library(stars)   ## For loading spatial raster data
library(ggplot2) ## For plotting the data

if (cds_token_works()) { ## Make sure there is an operational access token
  
  ## Submit a download job:
  job <-
    cds_submit_job(
      "sis-agrometeorological-indicators",
      statistic = "day_time_mean",
      variable = "2m_temperature",
      year = "2025",
      month = "01",
      day = "01")
  
  ## Actually download the data:
  data_file <- cds_download_jobs(job$jobID, tempdir())
  
  ## Unzip the downloaded data:
  data_unzipped <- unzip(data_file$local, list = TRUE)
  unzip(data_file$local, exdir = tempdir())
  data_stars <- read_mdim(file.path(tempdir(), data_unzipped))
  
  ## Plot the downloaded data
  ggplot() +
    geom_stars(data = data_stars) +
    coord_sf() +
    labs(fill = "T(air 2m) [K]", x = NULL, y = NULL) +
    scale_fill_viridis_c(option = "inferno", na.value = "transparent")
}

More of Copernicus

More R packages for exploring other Copernicus data services:

Code of Conduct

Please note that the CopernicusClimate project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

About

❗ This is a read-only mirror of the CRAN R package repository. CopernicusClimate — Search Download and Handle Data from Copernicus Climate Data Service. Homepage: https://pepijn-devries.github.io/CopernicusClimate/https://github.com/pepijn-devries/CopernicusClimate/ Report bugs for this package: https:/ ...

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages