Skip to content
/ SCORNET Public

❗ This is a read-only mirror of the CRAN R package repository. SCORNET — Semi-Supervised Calibration of Risk with Noisy Event Times. Homepage: https://github.com/celehs/SCORNET Report bugs for this package: https://github.com/celehs/SCORNET/issues

Notifications You must be signed in to change notification settings

cran/SCORNET

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SCORNET

R build status

Schematic of the SCORNET algorithm.

Overview

The Semi-supervised Calibration of Risk with Noisy Event Times (SCORNET) is a consistent, semi-supervised, non-parametric survival curve estimator optimized for efficient use of Electronic Health Record (EHR) data with a limited number of current status labels. Derived from van der Laan and Robins’ Inverse Probability of Censoring Weighted (IPCW) estimator, it achieves locally efficient survival curve estimation using current status labels – binary indicators of phenotype status at censoring time – rather than more expensive event time labels. SCORNET boosts efficiency over IPCW in the typical EHR setting by (1) utilizing unlabeled patients in a semi-supervised fashion, and (2) leveraging information-dense engineered EHR features to maximize imputation precision in the unlabeled set.

See Ahuja et al. (2020) for details.

Click HERE to view a simulated example.

References

  • Ahuja Y, Liang L, Huang S, Cai T (2020). Semi-supervised Calibration of Risk with Noisy Event Times (SCORNET) Using Electronic Health Record Data. BioArxiv.

  • Mark J. van der Laan & James M. Robins (1998) Locally Efficient Estimation with Current Status Data and Time-Dependent Covariates, Journal of the American Statistical Association, 93:442, 693-701, DOI: 10.1080/01621459.1998.10473721

About

❗ This is a read-only mirror of the CRAN R package repository. SCORNET — Semi-Supervised Calibration of Risk with Noisy Event Times. Homepage: https://github.com/celehs/SCORNET Report bugs for this package: https://github.com/celehs/SCORNET/issues

Resources

Stars

Watchers

Forks

Packages

No packages published