Skip to content
/ SPCompute Public

❗ This is a read-only mirror of the CRAN R package repository. SPCompute — Compute Power or Sample Size for GWAS with Covariate Effect

Notifications You must be signed in to change notification settings

cran/SPCompute

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SPCompute

The goal of SPCompute is to compute power and sample size for replication GWAS study, while accommodates different kinds of covariate effects. The methodology used in the software is described in this paper by Ziang Zhang and Lei Sun. The detailed implementation guideline can be found in the vignette of this package.

Installation

You can install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("AgueroZZ/SPCompute")

Example

This is a basic example which shows you how to solve a common problem of computing power for genetic association testing with a binary trait:

library(SPCompute)
## basic example code
parameters <- list(preva = 0.2, pG = 0.3, pE = 0.3, gammaG = 0.1, betaG = 0.1, betaE = 0.3)
Compute_Power(parameters, n = 8000, response = "binary", covariate = "none")
#> [1] 0.6404552

About

❗ This is a read-only mirror of the CRAN R package repository. SPCompute — Compute Power or Sample Size for GWAS with Covariate Effect

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages