Many academics and public health professionals in low- and middle-income countries (LMICs) hesitate to use R due to its steep learning curve. Instead, they often rely on menu-driven software like SPSS or Epi Info, which limits their ability to perform reproducible and advanced analyses. As a step towards addressing this gap, we created the gtregression package to simplify regression modelling in R. The package offers user-friendly syntax, intuitive functions, and publication-ready outputs—empowering analysts to adopt open-source tools with confidence.
gtregression
is an R package that simplifies regression modeling and
generates publication-ready tables using the gtsummary
ecosystem. It
supports a variety of regression approaches with built-in tools for
model diagnostics, selection, and confounder identification—all designed
to provide beginner and intermediate R users with clean, interpretable
output.
This package was created with the aim of empowering R users in low- and
middle-income countries (LMICs) by offering a simpler and more
accessible coding experience. We sincerely thank the authors and
contributors of foundational R packages such as gtsummary
, MASS
,
RISKS
, dplyr
, and others—without whom this project would not have
been possible.
At its core, gtregression
is more than just a statistical tool—it is a
commitment to open access, simplicity, and inclusivity in health data
science. Our team is driven by the vision of empowering researchers,
students, and public health professionals in LMICs through
user-friendly, well-documented tools that minimize coding burden and
maximize interpretability.
We believe in the democratization of data science and aim to promote open-source resources for impactful and equitable research globally.
- Supports multiple regression approaches:
- Logistic (logit)
- Log-binomial
- Poisson / Robust Poisson
- Negative Binomial
- Linear Regression
- Univariable and multivariable regression
- Confounder identification using crude and adjusted estimates
- Stepwise model selection (AIC/BIC/adjusted R²)
- Stratified regression support
- Formatted outputs using
gtsummary
- Built-in example datasets:
PimaIndiansDiabetes2
,birthwt
,epil
# Install from CRAN
install.packages("gtregression")
# Or install the development version from GitHub
devtools::install_github("ThinkDenominator/gtregression")
# Load necessary libraries
library(gtregression)
# Load example dataset
data("data_PimaIndiansDiabetes", package="gtregression")
# Convert diabetes outcome to binary and create categorical variables
pima_data <- data_PimaIndiansDiabetes |>
mutate(diabetes = ifelse(diabetes == "pos", 1, 0)) |>
mutate(bmi = case_when(
mass < 25 ~ "Normal",
mass >= 25 & mass < 30 ~ "Overweight",
mass >= 30 ~ "Obese",
TRUE ~ NA_character_),
bmi = factor(bmi, levels = c("Normal", "Overweight", "Obese")),
age_cat = case_when(
age < 30 ~ "Young",
age >= 30 & age < 50 ~ "Middle-aged",
age >= 50 ~ "Older"),
age_cat = factor(age_cat, levels = c("Young", "Middle-aged", "Older")),
npreg_cat = ifelse(pregnant > 2, "High parity", "Low parity"),
npreg_cat = factor(npreg_cat, levels = c("Low parity", "High parity")),
glucose_cat= case_when(glucose<=140~ "Normal", glucose>140~"High"),
glucose_cat= factor(glucose_cat, levels = c("Normal", "High")),
bp_cat = case_when(
pressure < 80 ~ "Normal",
pressure >= 80 ~ "High"
),
bp_cat= factor(bp_cat, levels = c("Normal", "High")),
triceps_cat = case_when(
triceps < 23 ~ "Normal",
triceps >= 23 ~ "High"
),
triceps_cat= factor(triceps_cat, levels = c("Normal", "High")),
insulin_cat = case_when(
insulin < 30 ~ "Low",
insulin >= 30 & insulin < 150 ~ "Normal",
insulin >= 150 ~ "High"
),
insulin_cat = factor(insulin_cat, levels = c("Low", "Normal", "High"))
) |>
mutate(
dpf_cat = case_when(
pedigree <= 0.2 ~ "Low Genetic Risk",
pedigree > 0.2 & pedigree <= 0.5 ~ "Moderate Genetic Risk",
pedigree > 0.5 ~ "High Genetic Risk"
)
) |>
mutate(dpf_cat = factor(dpf_cat,
levels = c("Low Genetic Risk",
"Moderate Genetic Risk",
"High Genetic Risk"))) |>
mutate(diabetes_cat= case_when(diabetes== 1~ "Diabetes positive",
TRUE~ "Diabetes negative")) |>
mutate(diabetes_cat= factor(diabetes_cat,
levels = c("Diabetes negative","Diabetes positive" )))
# Descriptive statistics table
exposures <- c("bmi", "age_cat", "npreg_cat", "bp_cat", "triceps_cat",
"insulin_cat", "dpf_cat")
# Create a descriptive table by diabetes category
des_tbl = descriptive_table(data= pima_data,
exposures = exposures,
by= "diabetes_cat")
# Check the data compatibility
dissect(pima_data)
# Univariable regression
uni_tbl = uni_reg(
data = pima_data,
outcome = "diabetes",
exposures = exposures,
approach = "logit"
)
# check models and summaries
uni_tbl$models
uni_tbl$model_summaries
# Plot univariable regression results
plot_reg(uni_tbl,
title = "Univariable Regression Results")
# multivariable regression
multi_tbl = multi_reg(
data = pima_data,
outcome = "diabetes",
exposures = exposures,
approach = "logit"
)
# check models and summaries
multi_tbl$models
multi_tbl$model_summaries
# Plot univariable regression results
plot_reg(multi_tbl,
title = "Multivariable Regression Results")
# combined plots
plot_reg_combine(
uni_tbl,
multi_tbl,
title = "Univariable vs Multivariable Regression Results")
# combine the tables
merge_table(des_tbl, uni_tbl, multi_tbl,
spanners = c("**Descriptive**",
"**Univariate**",
"**Multivariable**"))
# Save the table as a Word document
save_table(des_tbl, filename = "des_tbl", format = "docx")
save_docx(
tables = list(des_tbl, uni_tbl, multi_tbl),
filename = "Outputs.docx")
# Stratified regression
stratified_uni_reg(pima_data,
outcome= "diabetes",
exposures =c("bmi", "insulin_cat", "age_cat", "dpf_cat"),
approach = "logit",
stratifier = "glucose_cat")
stratified_multi_reg(pima_data,
outcome= "diabetes",
exposures =c("bmi", "insulin_cat", "age_cat", "dpf_cat"),
approach = "logit",
stratifier = "glucose_cat")
# Check model convergence
check_convergence(pima_data,
exposures = exposures,
outcome = "diabetes",
approach = "logit",
multivariate = F)
check_convergence(pima_data,
exposures = exposures,
outcome = "diabetes",
approach = "logit",
multivariate = T)
# identify confounders
identify_confounder(pima_data,
outcome = "diabetes",
exposure = "npreg_cat",
potential_confounder = "bp_cat",
approach = "logit")
# check interactions
interaction_models(pima_data,
outcome,
exposure = "bmi",
effect_modifier = "glucose_cat",
covariates = c("insulin_cat", "age_cat", "dpf_cat"),
approach = "logit")
Function Name | Purpose |
---|---|
descriptive_table() |
Summarise exposures by outcome groups |
dissect() |
Check outcome-exposure compatibility |
Function Name | Purpose |
---|---|
uni_reg() |
Univariable regression (OR/RR/IRR/β) |
multi_reg() |
Multivariable regression |
Function Name | Purpose |
---|---|
stratified_uni_reg() |
Stratified univariable regression |
stratified_multi_reg() |
Stratified multivariable regression |
Function Name | Purpose |
---|---|
check_convergence() |
Evaluate model convergence and max fitted values |
select_models() |
Stepwise model selection (AIC/BIC/adjusted R²) |
Function Name | Purpose |
---|---|
identify_confounder() |
Confounding assessment via % change or MH method |
interaction_models() |
Compare models with and without interaction terms |
Function Name | Purpose |
---|---|
plot_reg() |
Forest plot for a single regression model |
plot_reg_combine() |
Side-by-side forest plots for uni/multi models |
modify_table() |
Customize column labels or output structure |
save_table() |
Export table to .html , .csv , .docx |
save_docx() |
Save table as Word document (.docx ) |
save_plot() |
Save plot as .png , .pdf , etc. |
merge_tables() |
Combine descriptive and regression tables |
We welcome issues, feature requests, and pull requests.
- Fork the repository
- Create a new branch:
git checkout -b feature/my-feature
- Commit your changes:
git commit -m "Add feature"
- Push to GitHub:
git push origin feature/my-feature
- Open a Pull Request
The gtregression
package is developed and maintained by a
collaborative team committed to making regression modeling accessible,
especially for public health professionals and researchers in LMICs.
-
Rubeshkumar Polani
rubesh.pc@gmail.com
ORCID: 0000-0002-0418-7592
Creator and Author -
Salin K Eliyas
salins13@gmail.com
ORCID: 0000-0002-8020-5860
Author -
Manikandanesan Sakthivel
nesanmbbs@gmail.com
ORCID: 0000-0002-5438-3970
Author -
Yuvaraj Krishnamoorthy
yuvaraj@propulevidence.org
ORCID: 0000-0003-4688-510X
Author -
Marie Gilbert Majella
gilbert2691@gmail.com
ORCID: 0000-0003-4036-5162
Author
MIT License. See LICENSE for details.
The gtregression package icon uses the “Hearts” symbol created by Kim Sun Young from The Noun Project, used under the Creative Commons Attribution (CC BY 3.0) license.