Skip to content

❗ This is a read-only mirror of the CRAN R package repository. offlineChange — Detect Multiple Change Points from Time Series. Homepage: 

Notifications You must be signed in to change notification settings

cran/offlineChange

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The 'offlineChange' R package

Detect Multiple Change Points from Time Series

Getting Started

First install the devtools package

install.packages("devtools")

library("devtools")

Then install this package

install_github('JieGroup/offlineChange')

Using This Package

To see the available function to use, type

ls("package:offlineChange")

A quick guide of package can be found here

Reference Papers

Ding, J., Xiang, Y., Shen, L., & Tarokh, V. (2017). Multiple change point analysis: Fast implementation and strong consistency. IEEE Transactions on Signal Processing, 65(17), 4495-4510. link

J. Ding, "Multi-window method for unsupervised learning," preprint, 2019.

Acknowledgment

This research is funded by the Defense Advanced Research Projects Agency (DARPA) under grant number HR00111890040.

About

❗ This is a read-only mirror of the CRAN R package repository. offlineChange — Detect Multiple Change Points from Time Series. Homepage: 

Resources

Stars

Watchers

Forks

Packages

No packages published