PyTorch implementation of the MICCAI 2021 paper "TarGAN: Target-Aware Generative Adversarial Networks for Multi-modality Medical Image Translation". (It will be updated soon~)
- Python 3.7+
- PyTorch 1.6.0+
- Visualdl 2.0.5+ (optional for log)
To download the CHAOS dataset from the CHAOS challenge website. Then, you need to create a folder structure like this:
datasets/chaos2019/
├── train
│ ├── ct
│ │ ├──1
│ │ ├──...(patient index)
│ ├── t1
│ │ ├──3
│ │ ├──...(patient index)
│ ├── t2
│ │ ├──5
│ │ ├──...(patient index)
├── test
│ ├── ct
│ │ ├──2
│ │ ├──...(patient index)
│ ├── t1
│ │ ├──4
│ │ ├──...(patient index)
│ ├── t2
│ │ ├──6
│ │ ├──...(patient index)
To train TarGAN on CHAOS, run the training script below.
# Train TarGAN using the CHAOS dataset
python train.py -datasets chaos -save_path yours -epoch 50\
-c_dim 3 -batch_size 4 -lr 1e-4 -ttur 3e-4\
-random_seed 666