Plotting scripts for trec_eval output. Useful for reporting on IR system evaluations.
These require Python (2.6 or 2.7), NumPy, and matplotlib.
###Precision-recall curves
Plot precision-recall curves. These show the performance over all topics for ranked retrieval systems.
Usage: python plot_pr_curve.py [-h] [-f OUTFILE] FILE [FILE ...]
Options:
-h
Show this help message and exit.
-f FILENAME
Save the figure to specified file.
Pass multiple files to plot all the runs in the same plot.
$ python plot_pr_curve -f pr_curve.pdf indri.eval okapi.eval
Plot AP per topic for 1 run or per-topic difference for 2 runs.
Usage: python plot_topic_difference.py [-h] [-f OUTFILE] FILE1 [FILE2]
Options:
-h
Show this help message and exit.
-f FILENAME
Save the figure to specified file.
-s
Sort the topics in descending AP/difference.
When passing two files the plotted difference is FILE1 - FILE2.
$ python plot_topic_difference -f topic_difference.pdf indri.eval okapi.eval -s