This notebook shows how to use the DiagnosticsUtility, this is the only import you will need:
from diagnostics import DiagnosticsUtility
On object creation, pass the list of the data you want to log. The data is expected to be available at the same time, always log the same values
du = DiagnosticsUtility(['a','b','c'])
Pass a dict with the proper headings for each new value. You will get an error if you try to insert a key that was not specified on object creation.
for i in range(1000):
#Just call the .log() method to append the new data. Timestamp will be created automatically
du.log({
'a' : i,
'b' : i**2%15,
'c' : i%100
})
# Do something..
time.sleep(0.01)
Default plots can be generated like this: (Just pass the labels for the timeseries, or the paired labels )
du.generate_timeseries_plot(x_label = 'timestamp',y_labels=['a','b','c'])
du.generate_xy_plot(x_labels=['b','c'],y_labels=['a','b'])
du.clear()
<div class="bk-root">
<a href="https://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a>
<span id="26182f48-563e-4d2d-9b6e-6644b1aa1276">Loading BokehJS ...</span>
</div>
<div class="bk-root">
<a href="https://bokeh.pydata.org" target="_blank" class="bk-logo bk-logo-small bk-logo-notebook"></a>
<span id="f8170239-02d9-4633-8a57-d8194e2fd07f">Loading BokehJS ...</span>
</div>