forked from Morphnus-IT-Solutions/riba
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gviz_api.py
executable file
·1054 lines (921 loc) · 44.2 KB
/
gviz_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
#
# Copyright (C) 2009 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Converts Python data into data for Google Visualization API clients.
This library can be used to create a google.visualization.DataTable usable by
visualizations built on the Google Visualization API. Output formats are raw
JSON, JSON response, and JavaScript.
See http://code.google.com/apis/visualization/ for documentation on the
Google Visualization API.
"""
__author__ = "Amit Weinstein, Misha Seltzer"
import cgi
import datetime
import types
class DataTableException(Exception):
"""The general exception object thrown by DataTable."""
pass
class DataTable(object):
"""Wraps the data to convert to a Google Visualization API DataTable.
Create this object, populate it with data, then call one of the ToJS...
methods to return a string representation of the data in the format described.
You can clear all data from the object to reuse it, but you cannot clear
individual cells, rows, or columns. You also cannot modify the table schema
specified in the class constructor.
You can add new data one or more rows at a time. All data added to an
instantiated DataTable must conform to the schema passed in to __init__().
You can reorder the columns in the output table, and also specify row sorting
order by column. The default column order is according to the original
table_description parameter. Default row sort order is ascending, by column
1 values. For a dictionary, we sort the keys for order.
The data and the table_description are closely tied, as described here:
The table schema is defined in the class constructor's table_description
parameter. The user defines each column using a tuple of
(id[, type[, label[, custom_properties]]]). The default value for type is
string, label is the same as ID if not specified, and custom properties is
an empty dictionary if not specified.
table_description is a dictionary or list, containing one or more column
descriptor tuples, nested dictionaries, and lists. Each dictionary key, list
element, or dictionary element must eventually be defined as
a column description tuple. Here's an example of a dictionary where the key
is a tuple, and the value is a list of two tuples:
{('a', 'number'): [('b', 'number'), ('c', 'string')]}
This flexibility in data entry enables you to build and manipulate your data
in a Python structure that makes sense for your program.
Add data to the table using the same nested design as the table's
table_description, replacing column descriptor tuples with cell data, and
each row is an element in the top level collection. This will be a bit
clearer after you look at the following examples showing the
table_description, matching data, and the resulting table:
Columns as list of tuples [col1, col2, col3]
table_description: [('a', 'number'), ('b', 'string')]
AppendData( [[1, 'z'], [2, 'w'], [4, 'o'], [5, 'k']] )
Table:
a b <--- these are column ids/labels
1 z
2 w
4 o
5 k
Dictionary of columns, where key is a column, and value is a list of
columns {col1: [col2, col3]}
table_description: {('a', 'number'): [('b', 'number'), ('c', 'string')]}
AppendData( data: {1: [2, 'z'], 3: [4, 'w']}
Table:
a b c
1 2 z
3 4 w
Dictionary where key is a column, and the value is itself a dictionary of
columns {col1: {col2, col3}}
table_description: {('a', 'number'): {'b': 'number', 'c': 'string'}}
AppendData( data: {1: {'b': 2, 'c': 'z'}, 3: {'b': 4, 'c': 'w'}}
Table:
a b c
1 2 z
3 4 w
"""
def __init__(self, table_description, data=None, custom_properties=None):
"""Initialize the data table from a table schema and (optionally) data.
See the class documentation for more information on table schema and data
values.
Args:
table_description: A table schema, following one of the formats described
in TableDescriptionParser(). Schemas describe the
column names, data types, and labels. See
TableDescriptionParser() for acceptable formats.
data: Optional. If given, fills the table with the given data. The data
structure must be consistent with schema in table_description. See
the class documentation for more information on acceptable data. You
can add data later by calling AppendData().
custom_properties: Optional. A dictionary from string to string that
goes into the table's custom properties. This can be
later changed by changing self.custom_properties.
Raises:
DataTableException: Raised if the data and the description did not match,
or did not use the supported formats.
"""
self.__columns = self.TableDescriptionParser(table_description)
self.__data = []
self.custom_properties = {}
if custom_properties is not None:
self.custom_properties = custom_properties
if data:
self.LoadData(data)
@staticmethod
def _EscapeValueForCsv(v):
"""Escapes the value for use in a CSV file.
Puts the string in double-quotes, and escapes any inner double-quotes by
doubling them.
Args:
v: The value to escape.
Returns:
The escaped values.
"""
return '"%s"' % v.replace('"', '""')
@staticmethod
def _EscapeValue(v):
"""Puts the string in quotes, and escapes any inner quotes and slashes."""
if isinstance(v, unicode):
# Here we use repr as in the usual case, but on unicode strings, it
# also escapes the unicode characters (which we want to leave as is).
# So, after repr() we decode using raw-unicode-escape, which decodes
# only the unicode characters, and leaves all the rest (", ', \n and
# more) escaped.
# We don't take the first character, because repr adds a u in the
# beginning of the string (usual repr output for unicode is u'...').
return repr(v).decode("raw-unicode-escape")[1:]
# Here we use python built-in escaping mechanism for string using repr.
return repr(str(v))
@staticmethod
def _EscapeCustomProperties(custom_properties):
"""Escapes the custom properties dictionary."""
l = []
for key, value in custom_properties.iteritems():
l.append("%s:%s" % (DataTable._EscapeValue(key),
DataTable._EscapeValue(value)))
return "{%s}" % ",".join(l)
@staticmethod
def SingleValueToJS(value, value_type, escape_func=None):
"""Translates a single value and type into a JS value.
Internal helper method.
Args:
value: The value which should be converted
value_type: One of "string", "number", "boolean", "date", "datetime" or
"timeofday".
escape_func: The function to use for escaping strings.
Returns:
The proper JS format (as string) of the given value according to the
given value_type. For None, we simply return "null".
If a tuple is given, it should be in one of the following forms:
- (value, formatted value)
- (value, formatted value, custom properties)
where the formatted value is a string, and custom properties is a
dictionary of the custom properties for this cell.
To specify custom properties without specifying formatted value, one can
pass None as the formatted value.
One can also have a null-valued cell with formatted value and/or custom
properties by specifying None for the value.
This method ignores the custom properties except for checking that it is a
dictionary. The custom properties are handled in the ToJSon and ToJSCode
methods.
The real type of the given value is not strictly checked. For example,
any type can be used for string - as we simply take its str( ) and for
boolean value we just check "if value".
Examples:
SingleValueToJS(None, "boolean") returns "null"
SingleValueToJS(False, "boolean") returns "false"
SingleValueToJS((5, "5$"), "number") returns ("5", "'5$'")
SingleValueToJS((None, "5$"), "number") returns ("null", "'5$'")
Raises:
DataTableException: The value and type did not match in a not-recoverable
way, for example given value 'abc' for type 'number'.
"""
if escape_func is None:
escape_func = DataTable._EscapeValue
if isinstance(value, tuple):
# In case of a tuple, we run the same function on the value itself and
# add the formatted value.
if (len(value) not in [2, 3] or
(len(value) == 3 and not isinstance(value[2], dict))):
raise DataTableException("Wrong format for value and formatting - %s." %
str(value))
if not isinstance(value[1], types.StringTypes + (types.NoneType,)):
raise DataTableException("Formatted value is not string, given %s." %
type(value[1]))
js_value = DataTable.SingleValueToJS(value[0], value_type)
if value[1] is None:
return (js_value, None)
return (js_value, escape_func(value[1]))
# The standard case - no formatting.
t_value = type(value)
if value is None:
return "null"
if value_type == "boolean":
if value:
return "true"
return "false"
elif value_type == "number":
if isinstance(value, (int, long, float)):
return str(value)
raise DataTableException("Wrong type %s when expected number" % t_value)
elif value_type == "string":
if isinstance(value, tuple):
raise DataTableException("Tuple is not allowed as string value.")
return escape_func(value)
elif value_type == "date":
if not isinstance(value, (datetime.date, datetime.datetime)):
raise DataTableException("Wrong type %s when expected date" % t_value)
# We need to shift the month by 1 to match JS Date format
return "new Date(%d,%d,%d)" % (value.year, value.month - 1, value.day)
elif value_type == "timeofday":
if not isinstance(value, (datetime.time, datetime.datetime)):
raise DataTableException("Wrong type %s when expected time" % t_value)
return "[%d,%d,%d]" % (value.hour, value.minute, value.second)
elif value_type == "datetime":
if not isinstance(value, datetime.datetime):
raise DataTableException("Wrong type %s when expected datetime" %
t_value)
return "new Date(%d,%d,%d,%d,%d,%d)" % (value.year,
value.month - 1, # To match JS
value.day,
value.hour,
value.minute,
value.second)
# If we got here, it means the given value_type was not one of the
# supported types.
raise DataTableException("Unsupported type %s" % value_type)
@staticmethod
def ColumnTypeParser(description):
"""Parses a single column description. Internal helper method.
Args:
description: a column description in the possible formats:
'id'
('id',)
('id', 'type')
('id', 'type', 'label')
('id', 'type', 'label', {'custom_prop1': 'custom_val1'})
Returns:
Dictionary with the following keys: id, label, type, and
custom_properties where:
- If label not given, it equals the id.
- If type not given, string is used by default.
- If custom properties are not given, an empty dictionary is used by
default.
Raises:
DataTableException: The column description did not match the RE, or
unsupported type was passed.
"""
if not description:
raise DataTableException("Description error: empty description given")
if not isinstance(description, (types.StringTypes, tuple)):
raise DataTableException("Description error: expected either string or "
"tuple, got %s." % type(description))
if isinstance(description, types.StringTypes):
description = (description,)
# According to the tuple's length, we fill the keys
# We verify everything is of type string
for elem in description[:3]:
if not isinstance(elem, types.StringTypes):
raise DataTableException("Description error: expected tuple of "
"strings, current element of type %s." %
type(elem))
desc_dict = {"id": description[0],
"label": description[0],
"type": "string",
"custom_properties": {}}
if len(description) > 1:
desc_dict["type"] = description[1].lower()
if len(description) > 2:
desc_dict["label"] = description[2]
if len(description) > 3:
if not isinstance(description[3], dict):
raise DataTableException("Description error: expected custom "
"properties of type dict, current element "
"of type %s." % type(description[3]))
desc_dict["custom_properties"] = description[3]
if len(description) > 4:
raise DataTableException("Description error: tuple of length > 4")
if desc_dict["type"] not in ["string", "number", "boolean",
"date", "datetime", "timeofday"]:
raise DataTableException(
"Description error: unsupported type '%s'" % desc_dict["type"])
return desc_dict
@staticmethod
def TableDescriptionParser(table_description, depth=0):
"""Parses the table_description object for internal use.
Parses the user-submitted table description into an internal format used
by the Python DataTable class. Returns the flat list of parsed columns.
Args:
table_description: A description of the table which should comply
with one of the formats described below.
depth: Optional. The depth of the first level in the current description.
Used by recursive calls to this function.
Returns:
List of columns, where each column represented by a dictionary with the
keys: id, label, type, depth, container which means the following:
- id: the id of the column
- name: The name of the column
- type: The datatype of the elements in this column. Allowed types are
described in ColumnTypeParser().
- depth: The depth of this column in the table description
- container: 'dict', 'iter' or 'scalar' for parsing the format easily.
- custom_properties: The custom properties for this column.
The returned description is flattened regardless of how it was given.
Raises:
DataTableException: Error in a column description or in the description
structure.
Examples:
A column description can be of the following forms:
'id'
('id',)
('id', 'type')
('id', 'type', 'label')
('id', 'type', 'label', {'custom_prop1': 'custom_val1'})
or as a dictionary:
'id': 'type'
'id': ('type',)
'id': ('type', 'label')
'id': ('type', 'label', {'custom_prop1': 'custom_val1'})
If the type is not specified, we treat it as string.
If no specific label is given, the label is simply the id.
If no custom properties are given, we use an empty dictionary.
input: [('a', 'date'), ('b', 'timeofday', 'b', {'foo': 'bar'})]
output: [{'id': 'a', 'label': 'a', 'type': 'date',
'depth': 0, 'container': 'iter', 'custom_properties': {}},
{'id': 'b', 'label': 'b', 'type': 'timeofday',
'depth': 0, 'container': 'iter',
'custom_properties': {'foo': 'bar'}}]
input: {'a': [('b', 'number'), ('c', 'string', 'column c')]}
output: [{'id': 'a', 'label': 'a', 'type': 'string',
'depth': 0, 'container': 'dict', 'custom_properties': {}},
{'id': 'b', 'label': 'b', 'type': 'number',
'depth': 1, 'container': 'iter', 'custom_properties': {}},
{'id': 'c', 'label': 'column c', 'type': 'string',
'depth': 1, 'container': 'iter', 'custom_properties': {}}]
input: {('a', 'number', 'column a'): { 'b': 'number', 'c': 'string'}}
output: [{'id': 'a', 'label': 'column a', 'type': 'number',
'depth': 0, 'container': 'dict', 'custom_properties': {}},
{'id': 'b', 'label': 'b', 'type': 'number',
'depth': 1, 'container': 'dict', 'custom_properties': {}},
{'id': 'c', 'label': 'c', 'type': 'string',
'depth': 1, 'container': 'dict', 'custom_properties': {}}]
input: { ('w', 'string', 'word'): ('c', 'number', 'count') }
output: [{'id': 'w', 'label': 'word', 'type': 'string',
'depth': 0, 'container': 'dict', 'custom_properties': {}},
{'id': 'c', 'label': 'count', 'type': 'number',
'depth': 1, 'container': 'scalar', 'custom_properties': {}}]
input: {'a': ('number', 'column a'), 'b': ('string', 'column b')}
output: [{'id': 'a', 'label': 'column a', 'type': 'number', 'depth': 0,
'container': 'dict', 'custom_properties': {}},
{'id': 'b', 'label': 'column b', 'type': 'string', 'depth': 0,
'container': 'dict', 'custom_properties': {}}
NOTE: there might be ambiguity in the case of a dictionary representation
of a single column. For example, the following description can be parsed
in 2 different ways: {'a': ('b', 'c')} can be thought of a single column
with the id 'a', of type 'b' and the label 'c', or as 2 columns: one named
'a', and the other named 'b' of type 'c'. We choose the first option by
default, and in case the second option is the right one, it is possible to
make the key into a tuple (i.e. {('a',): ('b', 'c')}) or add more info
into the tuple, thus making it look like this: {'a': ('b', 'c', 'b', {})}
-- second 'b' is the label, and {} is the custom properties field.
"""
# For the recursion step, we check for a scalar object (string or tuple)
if isinstance(table_description, (types.StringTypes, tuple)):
parsed_col = DataTable.ColumnTypeParser(table_description)
parsed_col["depth"] = depth
parsed_col["container"] = "scalar"
return [parsed_col]
# Since it is not scalar, table_description must be iterable.
if not hasattr(table_description, "__iter__"):
raise DataTableException("Expected an iterable object, got %s" %
type(table_description))
if not isinstance(table_description, dict):
# We expects a non-dictionary iterable item.
columns = []
for desc in table_description:
parsed_col = DataTable.ColumnTypeParser(desc)
parsed_col["depth"] = depth
parsed_col["container"] = "iter"
columns.append(parsed_col)
if not columns:
raise DataTableException("Description iterable objects should not"
" be empty.")
return columns
# The other case is a dictionary
if not table_description:
raise DataTableException("Empty dictionaries are not allowed inside"
" description")
# To differentiate between the two cases of more levels below or this is
# the most inner dictionary, we consider the number of keys (more then one
# key is indication for most inner dictionary) and the type of the key and
# value in case of only 1 key (if the type of key is string and the type of
# the value is a tuple of 0-3 items, we assume this is the most inner
# dictionary).
# NOTE: this way of differentiating might create ambiguity. See docs.
if (len(table_description) != 1 or
(isinstance(table_description.keys()[0], types.StringTypes) and
isinstance(table_description.values()[0], tuple) and
len(table_description.values()[0]) < 4)):
# This is the most inner dictionary. Parsing types.
columns = []
# We sort the items, equivalent to sort the keys since they are unique
for key, value in sorted(table_description.items()):
# We parse the column type as (key, type) or (key, type, label) using
# ColumnTypeParser.
if isinstance(value, tuple):
parsed_col = DataTable.ColumnTypeParser((key,) + value)
else:
parsed_col = DataTable.ColumnTypeParser((key, value))
parsed_col["depth"] = depth
parsed_col["container"] = "dict"
columns.append(parsed_col)
return columns
# This is an outer dictionary, must have at most one key.
parsed_col = DataTable.ColumnTypeParser(table_description.keys()[0])
parsed_col["depth"] = depth
parsed_col["container"] = "dict"
return ([parsed_col] +
DataTable.TableDescriptionParser(table_description.values()[0],
depth=depth + 1))
@property
def columns(self):
"""Returns the parsed table description."""
return self.__columns
def NumberOfRows(self):
"""Returns the number of rows in the current data stored in the table."""
return len(self.__data)
def SetRowsCustomProperties(self, rows, custom_properties):
"""Sets the custom properties for given row(s).
Can accept a single row or an iterable of rows.
Sets the given custom properties for all specified rows.
Args:
rows: The row, or rows, to set the custom properties for.
custom_properties: A string to string dictionary of custom properties to
set for all rows.
"""
if not hasattr(rows, "__iter__"):
rows = [rows]
for row in rows:
self.__data[row] = (self.__data[row][0], custom_properties)
def LoadData(self, data, custom_properties=None):
"""Loads new rows to the data table, clearing existing rows.
May also set the custom_properties for the added rows. The given custom
properties dictionary specifies the dictionary that will be used for *all*
given rows.
Args:
data: The rows that the table will contain.
custom_properties: A dictionary of string to string to set as the custom
properties for all rows.
"""
self.__data = []
self.AppendData(data, custom_properties)
def AppendData(self, data, custom_properties=None):
"""Appends new data to the table.
Data is appended in rows. Data must comply with
the table schema passed in to __init__(). See SingleValueToJS() for a list
of acceptable data types. See the class documentation for more information
and examples of schema and data values.
Args:
data: The row to add to the table. The data must conform to the table
description format.
custom_properties: A dictionary of string to string, representing the
custom properties to add to all the rows.
Raises:
DataTableException: The data structure does not match the description.
"""
# If the maximal depth is 0, we simply iterate over the data table
# lines and insert them using _InnerAppendData. Otherwise, we simply
# let the _InnerAppendData handle all the levels.
if not self.__columns[-1]["depth"]:
for row in data:
self._InnerAppendData(({}, custom_properties), row, 0)
else:
self._InnerAppendData(({}, custom_properties), data, 0)
def _InnerAppendData(self, prev_col_values, data, col_index):
"""Inner function to assist LoadData."""
# We first check that col_index has not exceeded the columns size
if col_index >= len(self.__columns):
raise DataTableException("The data does not match description, too deep")
# Dealing with the scalar case, the data is the last value.
if self.__columns[col_index]["container"] == "scalar":
prev_col_values[0][self.__columns[col_index]["id"]] = data
self.__data.append(prev_col_values)
return
if self.__columns[col_index]["container"] == "iter":
if not hasattr(data, "__iter__") or isinstance(data, dict):
raise DataTableException("Expected iterable object, got %s" %
type(data))
# We only need to insert the rest of the columns
# If there are less items than expected, we only add what there is.
for value in data:
if col_index >= len(self.__columns):
raise DataTableException("Too many elements given in data")
prev_col_values[0][self.__columns[col_index]["id"]] = value
col_index += 1
self.__data.append(prev_col_values)
return
# We know the current level is a dictionary, we verify the type.
if not isinstance(data, dict):
raise DataTableException("Expected dictionary at current level, got %s" %
type(data))
# We check if this is the last level
if self.__columns[col_index]["depth"] == self.__columns[-1]["depth"]:
# We need to add the keys in the dictionary as they are
for col in self.__columns[col_index:]:
if col["id"] in data:
prev_col_values[0][col["id"]] = data[col["id"]]
self.__data.append(prev_col_values)
return
# We have a dictionary in an inner depth level.
if not data.keys():
# In case this is an empty dictionary, we add a record with the columns
# filled only until this point.
self.__data.append(prev_col_values)
else:
for key in sorted(data):
col_values = dict(prev_col_values[0])
col_values[self.__columns[col_index]["id"]] = key
self._InnerAppendData((col_values, prev_col_values[1]),
data[key], col_index + 1)
def _PreparedData(self, order_by=()):
"""Prepares the data for enumeration - sorting it by order_by.
Args:
order_by: Optional. Specifies the name of the column(s) to sort by, and
(optionally) which direction to sort in. Default sort direction
is asc. Following formats are accepted:
"string_col_name" -- For a single key in default (asc) order.
("string_col_name", "asc|desc") -- For a single key.
[("col_1","asc|desc"), ("col_2","asc|desc")] -- For more than
one column, an array of tuples of (col_name, "asc|desc").
Returns:
The data sorted by the keys given.
Raises:
DataTableException: Sort direction not in 'asc' or 'desc'
"""
if not order_by:
return self.__data
proper_sort_keys = []
if isinstance(order_by, types.StringTypes) or (
isinstance(order_by, tuple) and len(order_by) == 2 and
order_by[1].lower() in ["asc", "desc"]):
order_by = (order_by,)
for key in order_by:
if isinstance(key, types.StringTypes):
proper_sort_keys.append((key, 1))
elif (isinstance(key, (list, tuple)) and len(key) == 2 and
key[1].lower() in ("asc", "desc")):
proper_sort_keys.append((key[0], key[1].lower() == "asc" and 1 or -1))
else:
raise DataTableException("Expected tuple with second value: "
"'asc' or 'desc'")
def SortCmpFunc(row1, row2):
"""cmp function for sorted. Compares by keys and 'asc'/'desc' keywords."""
for key, asc_mult in proper_sort_keys:
cmp_result = asc_mult * cmp(row1[0].get(key), row2[0].get(key))
if cmp_result:
return cmp_result
return 0
return sorted(self.__data, cmp=SortCmpFunc)
def ToJSCode(self, name, columns_order=None, order_by=()):
"""Writes the data table as a JS code string.
This method writes a string of JS code that can be run to
generate a DataTable with the specified data. Typically used for debugging
only.
Args:
name: The name of the table. The name would be used as the DataTable's
variable name in the created JS code.
columns_order: Optional. Specifies the order of columns in the
output table. Specify a list of all column IDs in the order
in which you want the table created.
Note that you must list all column IDs in this parameter,
if you use it.
order_by: Optional. Specifies the name of the column(s) to sort by.
Passed as is to _PreparedData.
Returns:
A string of JS code that, when run, generates a DataTable with the given
name and the data stored in the DataTable object.
Example result:
"var tab1 = new google.visualization.DataTable();
tab1.addColumn('string', 'a', 'a');
tab1.addColumn('number', 'b', 'b');
tab1.addColumn('boolean', 'c', 'c');
tab1.addRows(10);
tab1.setCell(0, 0, 'a');
tab1.setCell(0, 1, 1, null, {'foo': 'bar'});
tab1.setCell(0, 2, true);
...
tab1.setCell(9, 0, 'c');
tab1.setCell(9, 1, 3, '3$');
tab1.setCell(9, 2, false);"
Raises:
DataTableException: The data does not match the type.
"""
if columns_order is None:
columns_order = [col["id"] for col in self.__columns]
col_dict = dict([(col["id"], col) for col in self.__columns])
# We first create the table with the given name
jscode = "var %s = new google.visualization.DataTable();\n" % name
if self.custom_properties:
jscode += "%s.setTableProperties(%s);\n" % (
name, DataTable._EscapeCustomProperties(self.custom_properties))
# We add the columns to the table
for i, col in enumerate(columns_order):
jscode += "%s.addColumn('%s', %s, %s);\n" % (
name,
col_dict[col]["type"],
DataTable._EscapeValue(col_dict[col]["label"]),
DataTable._EscapeValue(col_dict[col]["id"]))
if col_dict[col]["custom_properties"]:
jscode += "%s.setColumnProperties(%d, %s);\n" % (
name, i, DataTable._EscapeCustomProperties(
col_dict[col]["custom_properties"]))
jscode += "%s.addRows(%d);\n" % (name, len(self.__data))
# We now go over the data and add each row
for (i, (row, cp)) in enumerate(self._PreparedData(order_by)):
# We add all the elements of this row by their order
for (j, col) in enumerate(columns_order):
if col not in row or row[col] is None:
continue
cell_cp = ""
if isinstance(row[col], tuple) and len(row[col]) == 3:
cell_cp = ", %s" % DataTable._EscapeCustomProperties(row[col][2])
value = self.SingleValueToJS(row[col], col_dict[col]["type"])
if isinstance(value, tuple):
# We have a formatted value or custom property as well
if value[1] is None:
value = (value[0], "null")
jscode += ("%s.setCell(%d, %d, %s, %s%s);\n" %
(name, i, j, value[0], value[1], cell_cp))
else:
jscode += "%s.setCell(%d, %d, %s);\n" % (name, i, j, value)
if cp:
jscode += "%s.setRowProperties(%d, %s);\n" % (
name, i, DataTable._EscapeCustomProperties(cp))
return jscode
def ToHtml(self, columns_order=None, order_by=()):
"""Writes the data table as an HTML table code string.
Args:
columns_order: Optional. Specifies the order of columns in the
output table. Specify a list of all column IDs in the order
in which you want the table created.
Note that you must list all column IDs in this parameter,
if you use it.
order_by: Optional. Specifies the name of the column(s) to sort by.
Passed as is to _PreparedData.
Returns:
An HTML table code string.
Example result (the result is without the newlines):
<html><body><table border='1'>
<thead><tr><th>a</th><th>b</th><th>c</th></tr></thead>
<tbody>
<tr><td>1</td><td>"z"</td><td>2</td></tr>
<tr><td>"3$"</td><td>"w"</td><td></td></tr>
</tbody>
</table></body></html>
Raises:
DataTableException: The data does not match the type.
"""
table_template = "<html><body><table border='1'>%s</table></body></html>"
columns_template = "<thead><tr>%s</tr></thead>"
rows_template = "<tbody>%s</tbody>"
row_template = "<tr>%s</tr>"
header_cell_template = "<th>%s</th>"
cell_template = "<td>%s</td>"
if columns_order is None:
columns_order = [col["id"] for col in self.__columns]
col_dict = dict([(col["id"], col) for col in self.__columns])
columns_list = []
for col in columns_order:
columns_list.append(header_cell_template %
cgi.escape(col_dict[col]["label"]))
columns_html = columns_template % "".join(columns_list)
rows_list = []
# We now go over the data and add each row
for row, unused_cp in self._PreparedData(order_by):
cells_list = []
# We add all the elements of this row by their order
for col in columns_order:
# For empty string we want empty quotes ("").
value = ""
if col in row and row[col] is not None:
value = self.SingleValueToJS(row[col], col_dict[col]["type"])
if isinstance(value, tuple):
# We have a formatted value and we're going to use it
cells_list.append(cell_template % cgi.escape(value[1]))
else:
cells_list.append(cell_template % cgi.escape(value))
rows_list.append(row_template % "".join(cells_list))
rows_html = rows_template % "".join(rows_list)
return table_template % (columns_html + rows_html)
def ToCsv(self, columns_order=None, order_by=(), separator=", "):
"""Writes the data table as a CSV string.
Args:
columns_order: Optional. Specifies the order of columns in the
output table. Specify a list of all column IDs in the order
in which you want the table created.
Note that you must list all column IDs in this parameter,
if you use it.
order_by: Optional. Specifies the name of the column(s) to sort by.
Passed as is to _PreparedData.
separator: Optional. The separator to use between the values.
Returns:
A CSV string representing the table.
Example result:
'a', 'b', 'c'
1, 'z', 2
3, 'w', ''
Raises:
DataTableException: The data does not match the type.
"""
if columns_order is None:
columns_order = [col["id"] for col in self.__columns]
col_dict = dict([(col["id"], col) for col in self.__columns])
columns_list = []
for col in columns_order:
columns_list.append(DataTable._EscapeValueForCsv(col_dict[col]["label"]))
columns_line = separator.join(columns_list)
rows_list = []
# We now go over the data and add each row
for row, unused_cp in self._PreparedData(order_by):
cells_list = []
# We add all the elements of this row by their order
for col in columns_order:
value = '""'
if col in row and row[col] is not None:
value = self.SingleValueToJS(row[col], col_dict[col]["type"],
DataTable._EscapeValueForCsv)
if isinstance(value, tuple):
# We have a formatted value. Using it only for date/time types.
if col_dict[col]["type"] in ["date", "datetime", "timeofday"]:
cells_list.append(value[1])
else:
cells_list.append(value[0])
else:
# We need to quote date types, because they contain commas.
if (col_dict[col]["type"] in ["date", "datetime", "timeofday"] and
value != '""'):
value = '"%s"' % value
cells_list.append(value)
rows_list.append(separator.join(cells_list))
rows = "\n".join(rows_list)
return "%s\n%s" % (columns_line, rows)
def ToTsvExcel(self, columns_order=None, order_by=()):
"""Returns a file in tab-separated-format readable by MS Excel.
Returns a file in UTF-16 little endian encoding, with tabs separating the
values.
Args:
columns_order: Delegated to ToCsv.
order_by: Delegated to ToCsv.
Returns:
A tab-separated little endian UTF16 file representing the table.
"""
return self.ToCsv(
columns_order, order_by, separator="\t").encode("UTF-16LE")
def ToJSon(self, columns_order=None, order_by=()):
"""Writes a JSON string that can be used in a JS DataTable constructor.
This method writes a JSON string that can be passed directly into a Google
Visualization API DataTable constructor. Use this output if you are
hosting the visualization HTML on your site, and want to code the data
table in Python. Pass this string into the
google.visualization.DataTable constructor, e.g,:
... on my page that hosts my visualization ...
google.setOnLoadCallback(drawTable);
function drawTable() {
var data = new google.visualization.DataTable(_my_JSon_string, 0.6);
myTable.draw(data);
}
Args:
columns_order: Optional. Specifies the order of columns in the
output table. Specify a list of all column IDs in the order
in which you want the table created.
Note that you must list all column IDs in this parameter,
if you use it.
order_by: Optional. Specifies the name of the column(s) to sort by.
Passed as is to _PreparedData().
Returns:
A JSon constructor string to generate a JS DataTable with the data
stored in the DataTable object.
Example result (the result is without the newlines):
{cols: [{id:'a',label:'a',type:'number'},
{id:'b',label:'b',type:'string'},
{id:'c',label:'c',type:'number'}],
rows: [{c:[{v:1},{v:'z'},{v:2}]}, c:{[{v:3,f:'3$'},{v:'w'},{v:null}]}],
p: {'foo': 'bar'}}
Raises:
DataTableException: The data does not match the type.
"""
if columns_order is None:
columns_order = [col["id"] for col in self.__columns]
col_dict = dict([(col["id"], col) for col in self.__columns])
# Creating the columns jsons
cols_jsons = []
for col_id in columns_order:
d = dict(col_dict[col_id])
d["id"] = DataTable._EscapeValue(d["id"])
d["label"] = DataTable._EscapeValue(d["label"])
d["cp"] = ""
if col_dict[col_id]["custom_properties"]:
d["cp"] = ",p:%s" % DataTable._EscapeCustomProperties(
col_dict[col_id]["custom_properties"])
cols_jsons.append(
"{id:%(id)s,label:%(label)s,type:'%(type)s'%(cp)s}" % d)
# Creating the rows jsons
rows_jsons = []
for row, cp in self._PreparedData(order_by):
cells_jsons = []
for col in columns_order:
# We omit the {v:null} for a None value of the not last column
value = row.get(col, None)
if value is None and col != columns_order[-1]:
cells_jsons.append("")
else:
value = self.SingleValueToJS(value, col_dict[col]["type"])
if isinstance(value, tuple):
# We have a formatted value or custom property as well
if len(row.get(col)) == 3:
if value[1] is None:
cells_jsons.append("{v:%s,p:%s}" % (
value[0],
DataTable._EscapeCustomProperties(row.get(col)[2])))
else:
cells_jsons.append("{v:%s,f:%s,p:%s}" % (value + (
DataTable._EscapeCustomProperties(row.get(col)[2]),)))
else:
cells_jsons.append("{v:%s,f:%s}" % value)
else:
cells_jsons.append("{v:%s}" % value)
if cp:
rows_jsons.append("{c:[%s],p:%s}" % (
",".join(cells_jsons), DataTable._EscapeCustomProperties(cp)))
else:
rows_jsons.append("{c:[%s]}" % ",".join(cells_jsons))
general_custom_properties = ""
if self.custom_properties:
general_custom_properties = (
",p:%s" % DataTable._EscapeCustomProperties(self.custom_properties))
# We now join the columns jsons and the rows jsons
json = "{cols:[%s],rows:[%s]%s}" % (",".join(cols_jsons),
",".join(rows_jsons),
general_custom_properties)
return json
def ToJSonResponse(self, columns_order=None, order_by=(), req_id=0,
response_handler="google.visualization.Query.setResponse"):
"""Writes a table as a JSON response that can be returned as-is to a client.
This method writes a JSON response to return to a client in response to a
Google Visualization API query. This string can be processed by the calling
page, and is used to deliver a data table to a visualization hosted on
a different page.
Args:
columns_order: Optional. Passed straight to self.ToJSon().
order_by: Optional. Passed straight to self.ToJSon().
req_id: Optional. The response id, as retrieved by the request.
response_handler: Optional. The response handler, as retrieved by the
request.
Returns:
A JSON response string to be received by JS the visualization Query
object. This response would be translated into a DataTable on the
client side.
Example result (newlines added for readability):
google.visualization.Query.setResponse({
'version':'0.6', 'reqId':'0', 'status':'OK',
'table': {cols: [...], rows: [...]}});
Note: The URL returning this string can be used as a data source by Google