Skip to content

Ce fut mon prémier projet NLP où j'ai réalisé la détection de spam en utilisant les algorithmes d'embedding pour encorder mes textes. J'ai utilisé Random Forest et Milti-Layres Perceptrons pour la phase de classification. Ce qui a pemit l'obtension des précisions respective de 97% et 98%. J'ai aussi appris à documenter mes codes via sphinx

Notifications You must be signed in to change notification settings

dahsie/spam_classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

spam_classification

Ce fut mon prémier projet NLP ou j'ai réalisé la détection de spam en utilisant les algorithmes d'embedding pour encorder mes textes. J'ai utilisé Random Forest et Milti-Layres Perceptrons pour la phase de classification. Ce qui a pemit l'obtension des précisions respectives de 97% et 98%. J'ai aussi appris à documenter mes codes via sphinx

About

Ce fut mon prémier projet NLP où j'ai réalisé la détection de spam en utilisant les algorithmes d'embedding pour encorder mes textes. J'ai utilisé Random Forest et Milti-Layres Perceptrons pour la phase de classification. Ce qui a pemit l'obtension des précisions respective de 97% et 98%. J'ai aussi appris à documenter mes codes via sphinx

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages