Skip to content

daiyizheng/torchserve-demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Serving Huggingface Transformers using TorchServe

In this example, we show how to serve a fine tuned or off the shelf Transformer model from huggingface using TorchServe.

We use a custom handler, Transformer_handler.py.

This handler enables us to use pre-trained transformer models from Huggingface, such as BERT, RoBERTA, XLM for token classification, sequence classification and question answering.

We borrowed ideas to write a custom handler for transformers from tutorial presented in mnist from image classifiers examples and the post by MFreidank.

To get started install Torchserve and then

pip install transformers==4.6.0

Objectives

  1. How to package a transformer into a torch model archive (.mar) file (eager mode or Torchscript) with torch-model-archiver
  2. How to load mar file in torch serve to run inferences and explanations using torchserve

Getting Started with the Demo

If you're finetuning an existing model then you need to save your model and tokenizer with save_pretrained() which will create a pytorch_model.bin, vocab.txt and config.json file. Make sure to create them then run

mkdir Transformer_model
mv pytorch_model.bin vocab.txt config.json Transformer_model/

If you'd like to download a pretrained model without fine tuning we've provided a simple helper script which will do the above for you. All you need to do is change setup.config.json to your liking and run

python Download_Transformer_models.py

For Torchscript support, check out torchscript.md

Setting the setup_config.json

In the setup_config.json :

model_name : bert-base-uncased , roberta-base or other available pre-trained models.

mode: sequence_classification, token_classification or question_answering

do_lower_case : true or false which configures the tokenizer

num_labels : number of outputs for sequence_classification: 2, token_classification: 9 or question_answering: 0

save_mode : "torchscript" or "pretrained", this setting will be used by Download_transformer_models.py script as well as the handler, to download/save and load the model in Torchscript or save_pretrained mode respectively.

max_length : maximum length for the input sequences to the models, this will be used in preprocessing of the handler. Also, if you choose to use Torchscript as the serialized model for packaging your model this length should be equal to the length that has been used during the tracing of the model using torch.jit.trace.

captum_explanation : true for eager mode models but should be set to false for torchscripted models or if you don't need explanations

embedding_name : The name of embedding layer in the chosen model, this could be bert for bert-base-uncased, roberta for roberta-base or roberta for xlm-roberta-large.

Once, setup_config.json has been set properly, the next step is to run

python Download_Transformer_models.py

This produces all the required files for packaging using a huggingface transformer model off-the-shelf without fine-tuning process. Using this option will create and saved the required files into Transformer_model directory.

Setting the extra_files

There are few files that are used for model packaging and at the inference time.

  • index_to_name.json: maps predictions to labels
  • sample_text.txt: input text for inference
  • vocab.txt: by default will use the tokenizer from the pretrained model

For custom vocabs, it is required to pass all other tokenizer related files such tokenizer_config.json, special_tokens_map.json, config.json and if available merges.txt.

For examples of how to configure a model for a use case and what the input format should look like

  • Model configuration: Transformer_model directory after running python Download_Transformer_models.py
  • Examples: QA_artifacts, Seq_classification_artifacts and Token_classification_artifacts

Sequence Classification

Create model archive eager mode

/usr/local/python3/bin/torch-model-archiver --model-name BERTSeqClassification --version 1.0 --serialized-file ./Transformer_model_torchscript/pytorch_model.bin --handler ./Transformer_model_torchscript/Transformer_handler_generalized.py --extra-files "./Transformer_model_torchscript/config.json,./Transformer_model_torchscript/setup_config.json,./Transformer_model_torchscript/index_to_name.json"

Create model archive Torchscript mode

/usr/local/python3/bin/torch-model-archiver --model-name BERTSeqClassification --version 1.0 --serialized-file ./Transformer_model_torchscript/traced_model.pt --handler ./Transformer_model_torchscript/Transformer_handler_generalized.py --extra-files "./Transformer_model_torchscript/setup_config.json,./Transformer_model_torchscript/index_to_name.json"

Register the model

To register the model on TorchServe using the above model archive file, we run the following commands:

mkdir model_store
mv BERTSeqClassification.mar model_store/
torchserve --start --model-store model_store --models my_tc=BERTSeqClassification.mar --ncs

Run an inference

To run an inference: curl -X POST http://127.0.0.1:8080/predictions/my_tc -T Seq_classification_artifacts/sample_text_captum_input.txt To get an explanation: curl -X POST http://127.0.0.1:8080/explanations/my_tc -T Seq_classification_artifacts/sample_text_captum_input.txt

Token Classification

Change setup_config.json to

{
 "model_name":"bert-base-uncased",
 "mode":"token_classification",
 "do_lower_case":true,
 "num_labels":"9",
 "save_mode":"pretrained",
 "max_length":"150",
 "captum_explanation":true,
 "embedding_name": "bert"
}
rm -r Transformer_model
python Download_Transformer_models.py

Create model archive eager mode

torch-model-archiver --model-name BERTTokenClassification --version 1.0 --serialized-file Transformer_model/pytorch_model.bin --handler ./Transformer_handler_generalized.py --extra-files "Transformer_model/config.json,./setup_config.json,./Token_classification_artifacts/index_to_name.json"

Create model archive Torchscript mode

torch-model-archiver --model-name BERTTokenClassification --version 1.0 --serialized-file Transformer_model/traced_model.pt --handler ./Transformer_handler_generalized.py --extra-files "./setup_config.json,./Token_classification_artifacts/index_to_name.json"

Register the model

mkdir model_store
mv BERTTokenClassification.mar model_store
torchserve --start --model-store model_store --models my_tc=BERTTokenClassification.mar --ncs

Run an inference

To run an inference: curl -X POST http://127.0.0.1:8080/predictions/my_tc -T Token_classification_artifacts/sample_text_captum_input.txt To get an explanation: curl -X POST http://127.0.0.1:8080/explanations/my_tc -T Token_classification_artifacts/sample_text_captum_input.txt

Question Answering

Change setup_config.json to

{
 "model_name":"distilbert-base-cased-distilled-squad",
 "mode":"question_answering",
 "do_lower_case":true,
 "num_labels":"0",
 "save_mode":"pretrained",
 "max_length":"128",
 "captum_explanation":true,
 "embedding_name": "distilbert"
}

docker run -itd -p 10022:22 -p 8080:8080 -p 8081:8081 --name centos repu/torchserve:v1.0.0

rm -r Transformer_model
python Download_Transformer_models.py

Create model archive eager mode

torch-model-archiver --model-name BERTQA --version 1.0 --serialized-file Transformer_model/pytorch_model.bin --handler ./Transformer_handler_generalized.py --extra-files "Transformer_model/config.json,./setup_config.json"

Create model archive Torchscript mode

torch-model-archiver --model-name BERTQA --version 1.0 --serialized-file Transformer_model/traced_model.pt --handler ./Transformer_handler_generalized.py --extra-files "./setup_config.json"

Register the model

mkdir model_store
mv BERTQA.mar model_store
torchserve --start --model-store model_store --models my_tc=BERTQA.mar --ncs

Run an inference

To run an inference: curl -X POST http://127.0.0.1:8080/predictions/my_tc -T QA_artifacts/sample_text_captum_input.txt To get an explanation: curl -X POST http://127.0.0.1:8080/explanations/my_tc -T QA_artifacts/sample_text_captum_input.txt

Batch Inference

For batch inference the main difference is that you need set the batch size while registering the model. This can be done either through the management API or if using Torchserve 0.4.1 and above, it can be set through config.properties as well. Here is an example of setting batch size for sequence classification with management API and through config.properties. You can read more on batch inference in Torchserve here.

  • Management API

    mkdir model_store
    mv BERTSeqClassification.mar model_store/
    /usr/local/python3/bin/torchserve --start --model-store model_store --ncs
    
    curl -X POST "localhost:8081/models?model_name=my_tc&url=BERTSeqClassification.mar&batch_size=4&max_batch_delay=5000&initial_workers=3&synchronous=true"
    
  • Config.properties

    
    models={\
      "BERTSeqClassification": {\
        "2.0": {\
            "defaultVersion": true,\
            "marName": "BERTSeqClassification.mar",\
            "minWorkers": 1,\
            "maxWorkers": 1,\
            "batchSize": 4,\
            "maxBatchDelay": 5000,\
            "responseTimeout": 120\
        }\
      }\
    }
    
    mkdir model_store
    mv BERTSeqClassification.mar model_store/
    torchserve --start --model-store model_store --ts-config config.properties --models BERTSeqClassification= BERTSeqClassification.mar
    
    

Now to run the batch inference following command can be used:

curl -X POST http://127.0.0.1:8080/predictions/BERTSeqClassification  -T ./Seq_classification_artifacts/sample_text1.txt
& curl -X POST http://127.0.0.1:8080/predictions/BERTSeqClassification  -T ./Seq_classification_artifacts/sample_text2.txt
& curl -X POST http://127.0.0.1:8080/predictions/BERTSeqClassification -T ./Seq_classification_artifacts/sample_text3.txt &

More information

Captum Explanations for Visual Insights

The Captum Explanations for Visual Insights Notebook provides a visual example for how model interpretations can help

Known issues:

  • Captum does't work well for batched inputs and may result in timeouts
  • No support for torchscripted models

Captum JSON support

In order to run Captum Explanations with the request input in a json file, follow the below steps:

In the config.properties, specify service_envelope=body and make the curl request as below:

curl -H "Content-Type: application/json" --data @examples/Huggingface_Transformers/bert_ts.json http://127.0.0.1:8080/explanations/bert_explain

When a json file is passed as a request format to the curl, Torchserve unwraps the json file from the request body. This is the reason for specifying service_envelope=body in the config.properties file

Running KFServing

BERT Readme for KFServing to run it locally. End to End KFServing document to run it in the cluster.