Launch mlflow service via docker
using remote artifacts, MinIO
-
modify .env from .env.example
# postgres POSTGRES_USER= POSTGRES_PASSWORD= POSTGRES_DB=mlflow # mlflow BUCKET_NAME=mlflow # MinIO MINIO_ROOT_USER= MINIO_ROOT_PASSWORD= MINIO_VOLUMES=/mnt/data # project MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 ## usually same as `MINIO_ROOT_USER` and `MINIO_ROOT_PASSWORD` AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY=
-
[Optional] Create Self-signed certificates and HTTPS request
- Create Self-signed certificates
cd nginx/ssl sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout private.key -out public.crt
- Modify service config file in
nginx/conf.d
- Create Self-signed certificates
-
Launch Service
docker-compose up -d
-
Add Environment Variables add the following environment variables to your application.
# project MLFLOW_S3_ENDPOINT_URL=http://localhost:9000 ## usually same as `MINIO_ROOT_USER` and `MINIO_ROOT_PASSWORD` AWS_ACCESS_KEY_ID= AWS_SECRET_ACCESS_KEY=
-
Log to mlflow log_metric.py