Skip to content

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

Notifications You must be signed in to change notification settings

danigiro/AusGDP_IJF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Sep 3, 2021
fd140da · Sep 3, 2021

History

6 Commits
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Sep 3, 2021
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Nov 10, 2020
Sep 3, 2021
Sep 3, 2021
Nov 10, 2020

Repository files navigation

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

The cross-temporal forecast reconciliation for 95 Australian Quarterly National Accounts time series is applied within the same forecasting experiment designed by Athanasopoulos et al. (2019) extended in order to consider semi-annual and annual forecasts as well.

Keywords: Linearly constrained multiple time series, Combining forecasts, Heuristic techniques, Evaluating forecasts, GDP from Income and Expenditure side

R scripts:

  • 00Aus_base.R: aggregating and forecasting Australian GDP Time series by quarter, semester and year (input: AusGDP_inpdata.RData, output: Aus_basef.RData);

  • 01AusHTS_recf.R: creating an RData file of base and cross-sectional reconciled forecasts for the Australian GDP’s system (input: Aus_basef.RData, output: AusHTS_recf.RData)

  • 02AusHTS_scores.R: Accuracy indices for the cross-sectional reconciled forecasts for Australian GDP time series by quarter, semester and year. (input: AusHTS_recf.RData, output: AusHTS_scores.RData)

  • 03AusTMP_recf.R: Creating an RData file of base and reconciled forecasts for each time series in the Australian GDP’s system (input: Aus_basef.RData, output: AusTMP_recf.RData)

  • 04AusTMP_scores.R: Accuracy indices for the temporal reconciled forecasts for Australian GDP time series by quarter, semester and year (input: AusTMP_recf.RData, output: AusTMP_scores.RData)

  • 05AusCTR_recf.R: Reconcile forecasts with the heuristic of Kourentzes & Athanasopoulos (2019) and the Optimal Cross-Temporal approach. (input: AusGDP_inpdata.RData & Aus_basef.RData, output: AusCTR_recf.RData)

  • 06AusCTR_scores.R: Accuracy indices for the cross-temporal reconciled forecasts for Australian GDP time series by quarter, semester and year (input: AusCTR_recf_part1.RData & AusCTR_recf_part2.RData, output: AusCTR_scores.RData)

  • 07Aus_horizon.R: Focus on performance by forecast horizon (input: AusCTR_recf.RData, AusHTS_recf.RData and AusTMP_recf.RData, output: Aus_horizon.RData)

  • 08Aus_mcb.R: Model Comparison with the Best Dataset (input: AusCTR_recf.RData, AusHTS_recf.RData and AusTMP_recf.RData, output: Aus_mcb.RData)

  • 09Aus_mcbPlot.R: Model Comparison with the Best (input: Aus_mcb.RData)

  • 10Aus_plotWP.R: Plots of the paper (input: AusCTR_scores.RData, AusHTS_scores.RData & AusTMP_scores.RData)

References:

Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R.J., Affan, M., 2019. Hierarchical Forecasting, in: Fuleky, P. (Ed.), Macroeconomic Forecasting in the Era of Big Data. Springer, Cham, pp. 689–719. doi:10.1007/978-3-030-31150-6_21.

Di Fonzo, T., Girolimetto, D. (2021), Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives, International Journal of Forecasting, in press (draft version: arXiv:2006.08570).

About

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

Topics

Resources

Stars

Watchers

Forks

Languages