Skip to content

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

Notifications You must be signed in to change notification settings

danigiro/AusGDP_IJF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

The cross-temporal forecast reconciliation for 95 Australian Quarterly National Accounts time series is applied within the same forecasting experiment designed by Athanasopoulos et al. (2019) extended in order to consider semi-annual and annual forecasts as well.

Keywords: Linearly constrained multiple time series, Combining forecasts, Heuristic techniques, Evaluating forecasts, GDP from Income and Expenditure side

R scripts:

  • 00Aus_base.R: aggregating and forecasting Australian GDP Time series by quarter, semester and year (input: AusGDP_inpdata.RData, output: Aus_basef.RData);

  • 01AusHTS_recf.R: creating an RData file of base and cross-sectional reconciled forecasts for the Australian GDP’s system (input: Aus_basef.RData, output: AusHTS_recf.RData)

  • 02AusHTS_scores.R: Accuracy indices for the cross-sectional reconciled forecasts for Australian GDP time series by quarter, semester and year. (input: AusHTS_recf.RData, output: AusHTS_scores.RData)

  • 03AusTMP_recf.R: Creating an RData file of base and reconciled forecasts for each time series in the Australian GDP’s system (input: Aus_basef.RData, output: AusTMP_recf.RData)

  • 04AusTMP_scores.R: Accuracy indices for the temporal reconciled forecasts for Australian GDP time series by quarter, semester and year (input: AusTMP_recf.RData, output: AusTMP_scores.RData)

  • 05AusCTR_recf.R: Reconcile forecasts with the heuristic of Kourentzes & Athanasopoulos (2019) and the Optimal Cross-Temporal approach. (input: AusGDP_inpdata.RData & Aus_basef.RData, output: AusCTR_recf.RData)

  • 06AusCTR_scores.R: Accuracy indices for the cross-temporal reconciled forecasts for Australian GDP time series by quarter, semester and year (input: AusCTR_recf_part1.RData & AusCTR_recf_part2.RData, output: AusCTR_scores.RData)

  • 07Aus_horizon.R: Focus on performance by forecast horizon (input: AusCTR_recf.RData, AusHTS_recf.RData and AusTMP_recf.RData, output: Aus_horizon.RData)

  • 08Aus_mcb.R: Model Comparison with the Best Dataset (input: AusCTR_recf.RData, AusHTS_recf.RData and AusTMP_recf.RData, output: Aus_mcb.RData)

  • 09Aus_mcbPlot.R: Model Comparison with the Best (input: Aus_mcb.RData)

  • 10Aus_plotWP.R: Plots of the paper (input: AusCTR_scores.RData, AusHTS_scores.RData & AusTMP_scores.RData)

References:

Athanasopoulos, G., Gamakumara, P., Panagiotelis, A., Hyndman, R.J., Affan, M., 2019. Hierarchical Forecasting, in: Fuleky, P. (Ed.), Macroeconomic Forecasting in the Era of Big Data. Springer, Cham, pp. 689–719. doi:10.1007/978-3-030-31150-6_21.

Di Fonzo, T., Girolimetto, D. (2021), Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives, International Journal of Forecasting, in press (draft version: arXiv:2006.08570).

About

Australian Gross Domestic Product (GDP) application, Di Fonzo and Girolimetto (2021)

Topics

Resources

Stars

Watchers

Forks

Languages