Skip to content

Este projeto foi desenvolvido principalmente para facilitar a interação do usuário com o arquivo dataset.csv por meio de uma interface gráfica.

Notifications You must be signed in to change notification settings

danttis/Data-Analyzer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dashboard para análise

Este projeto foi desenvolvido principalmente utilizando as seguintes bibliotecas em Python: Streamlit, Pandas, Scikit-Learn, Plotly, Numpy e Statsmodels. Ele possui uma interface simples que permite a interação com o arquivo dataset.csv do usuário. No projeto, é possível analisar dados de três tipos:

Séries Temporais

Séries Temporais são dados indexados no tempo. Os usuários podem inserir seus próprios dados e obter:

  • Gráfico da série temporal.
  • Histograma dos dados numéricos.
  • Tabela de descrição dos dados.
  • Gráfico da série temporal e de uma série secundária gerada pela média dos três últimos eventos.
  • Um módulo de modelagem, onde é possível utilizar o modelo ETS para tentar prever as próximas ocorrências da série. Ele retorna o RMSE, a previsão do modelo ETS e a precisão usando a média dos três últimos eventos da série real.

Classificação

No módulo de Classificação, é possível inserir dados de categorias ou classes e o usuário receberá:

  • Um gráfico de barras mostrando as categorias, suas classes e suas respectivas quantidades.
  • Um boxplot da variável alvo em relação à primeira variável secundária selecionada.
  • Uma tabela com as variáveis selecionadas.
  • Uma tabela sobre o modelo utilizado para classificação, que emprega um modelo de Florestas Aleatórias, utilizando a variável alvo e todas as secundárias.

O usuário recebe uma classificação baseada no modelo (este modelo não está otimizado e utiliza as configurações padrão do sklearn).

Regressão

Neste módulo, o usuário pode modelar valores numéricos e obter:

  • Um histograma da variável alvo.
  • Uma matriz de correlação entre as variáveis selecionadas, incluindo ou não a coluna alvo.
  • Uma tabela com informações sobre os dados.
  • Um gráfico que pode ser um boxplot, se a primeira coluna secundária for categórica, ou um gráfico de dispersão, se for uma coluna numérica comum.

Também é possível criar um modelo de previsão, assim como na classificação, baseado em Florestas Aleatórias, porém este é otimizado usando uma busca em grade (GridSearch).

About

Este projeto foi desenvolvido principalmente para facilitar a interação do usuário com o arquivo dataset.csv por meio de uma interface gráfica.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages