Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 23 additions & 21 deletions docs/cn/release-notes/databend.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
---
sidebar_label: Databend 版本发布
title: Databend 版本发布
sidebar_label: Databend Releases
title: Databend Releases
sidebar_position: 1
slug: /
---

import StepsWrap from '@site/src/components/StepsWrap';
import StepContent from '@site/src/components/Steps/step-content';

本页面提供 <a href="https://github.com/databendlabs/databend">Databend</a> 最新功能、增强与错误修复的相关信息。
This page provides information about recent features, enhancements, and bug fixes for <a href="https://github.com/databendlabs/databend">Databend</a>.



import MD1 from '@site/docs/release-stable/2025-04-21_v1.2.725.md';
import MD2 from '@site/docs/release-stable/2025-02-14_v1.2.697.md';
Expand All @@ -35,138 +37,138 @@ import MD17 from '@site/docs/release-stable/2023-12-13_v1.2.233.md';

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.725" number="-1">

## 2025 年 4 月 21 日(v1.2.725
## Apr 21, 2025 (v1.2.725)

<MD1 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.697" number="">

## 2025 年 2 月 14 日(v1.2.697
## Feb 14, 2025 (v1.2.697)

<MD2 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.680" number="">

## 2025 年 1 月 2 日(v1.2.680
## Jan 2, 2025 (v1.2.680)

<MD3 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.615" number="">

## 2024 年 8 月 19 日(v1.2.615
## Aug 19, 2024 (v1.2.615)

<MD4 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.609" number="">

## 2024 年 8 月 13 日(v1.2.609
## Aug 13, 2024 (v1.2.609)

<MD5 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.530" number="">

## 2024 年 6 月 16 日(v1.2.530
## Jun 16, 2024 (v1.2.530)

<MD6 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.452" number="">

## 2024 年 5 月 6 日(v1.2.452
## May 6, 2024 (v1.2.452)

<MD7 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.410" number="">

## 2024 年 4 月 8 日(v1.2.410
## Apr 8, 2024 (v1.2.410)

<MD8 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.371" number="">

## 2024 年 3 月 11 日(v1.2.371
## Mar 11, 2024 (v1.2.371)

<MD9 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.344" number="">

## 2024 年 2 月 22 日(v1.2.344
## Feb 22, 2024 (v1.2.344)

<MD10 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.307" number="">

## 2024 年 1 月 25 日(v1.2.307
## Jan 25, 2024 (v1.2.307)

<MD11 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.292" number="">

## 2024 年 1 月 11 日(v1.2.292
## Jan 11, 2024 (v1.2.292)

<MD12 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.290" number="">

## 2024 年 1 月 10 日(v1.2.290
## Jan 10, 2024 (v1.2.290)

<MD13 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.279" number="">

## 2024 年 1 月 2 日(v1.2.279
## Jan 2, 2024 (v1.2.279)

<MD14 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.275" number="">

## 2023 年 12 月 30 日(v1.2.275
## Dec 30, 2023 (v1.2.275)

<MD15 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.262" number="">

## 2023 年 12 月 20 日(v1.2.262
## Dec 20, 2023 (v1.2.262)

<MD16 />

</StepContent>

<StepContent outLink="https://github.com/databendlabs/databend/releases/tag/v1.2.233" number="">

## 2023 年 12 月 13 日(v1.2.233
## Dec 13, 2023 (v1.2.233)

<MD17 />

</StepContent>

</StepsWrap>
</StepsWrap>
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ This page provides an updated list of available enterprise features. To access t
| [Ngram Index](/guides/performance/ngram-index) | Query Performance | Accelerate LIKE pattern matching queries with wildcard searches. |
| [Virtual Column](/sql/sql-commands/ddl/virtual-column) | Query Performance | Automatically accelerate JSON queries with zero-configuration performance optimization for VARIANT data. |
| [Dynamic Column](/sql/sql-commands/ddl/table/ddl-create-table#computed-columns) | Query Performance | Generate columns automatically from scalar expressions with stored or virtual calculation modes. |
| [Python UDF](/guides/query/udf#python-requires-databend-enterprise) | Advanced Analytics | Execute Python code within SQL queries using built-in handler. |
| [Python UDF](/guides/query/advanced/udf#python-requires-databend-enterprise) | Advanced Analytics | Execute Python code within SQL queries using built-in handler. |
| [ATTACH TABLE](/sql/sql-commands/ddl/table/attach-table) | Data Sharing | Create read-only links to existing table data with zero-copy access across environments. |
| [Stream](/sql/sql-commands/ddl/stream) | Change Data Capture | Track and capture table changes for incremental data processing. |
| [Vacuum Temp Files](/sql/sql-commands/administration-cmds/vacuum-temp-files) | Storage Management | Clean up temporary files (join, aggregate, sort spills) to free storage space. |
Expand Down
2 changes: 1 addition & 1 deletion docs/en/guides/20-cloud/20-manage/01-monitor.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ The **SQL History** tab displays a list of SQL statements that have been execute
Clicking a record on the **SQL History** page reveals detailed information on how Databend Cloud executed the SQL statement, providing access to the following tabs:

- **Query Details**: Includes Query State (success or failure), Rows Scanned, Warehouse, Bytes Scanned, Start Time, End Time, and Handler Type.
- **Query Profile**: Illustrates how the SQL statement was executed. For more information, see [Query Profile](/guides/query/query-profile).
- **Query Profile**: Illustrates how the SQL statement was executed.

## Task History

Expand Down
2 changes: 1 addition & 1 deletion docs/en/guides/51-ai-functions/01-external-functions.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,5 +78,5 @@ LIMIT 5;

## Learn More

- **[External Functions Guide](/guides/query/external-function)** - Complete setup and deployment instructions
- **[External Functions Guide](/guides/query/advanced/external-function)** - Complete setup and deployment instructions
- **[Databend Cloud](https://databend.com)** - Try external functions with a free account
4 changes: 4 additions & 0 deletions docs/en/guides/54-query/00-basics/_category_.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
{
"label": "Basic Queries",
"position": 1
}
90 changes: 90 additions & 0 deletions docs/en/guides/54-query/00-basics/aggregating-data.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
---
title: Aggregating Data
---

Learn to summarize and analyze data using GROUP BY, aggregate functions, and advanced grouping techniques.

## Basic Aggregation

### Common Aggregate Functions
```sql
-- Count rows
SELECT COUNT(*) FROM employees;

-- Statistical functions
SELECT
AVG(salary) as avg_salary,
MIN(salary) as min_salary,
MAX(salary) as max_salary,
SUM(salary) as total_salary
FROM employees;
```

## GROUP BY Fundamentals

### Single Column Grouping
```sql
-- Count employees by department
SELECT department, COUNT(*) as emp_count
FROM employees
GROUP BY department;

-- Average salary by department
SELECT department, AVG(salary) as avg_salary
FROM employees
GROUP BY department
ORDER BY avg_salary DESC;
```

### Multiple Column Grouping
```sql
-- Group by department and hire year
SELECT
department,
EXTRACT(YEAR FROM hire_date) as hire_year,
COUNT(*) as count,
AVG(salary) as avg_salary
FROM employees
GROUP BY department, EXTRACT(YEAR FROM hire_date)
ORDER BY department, hire_year;
```

### GROUP BY with HAVING
```sql
-- Find departments with more than 5 employees
SELECT department, COUNT(*) as emp_count
FROM employees
GROUP BY department
HAVING COUNT(*) > 5;

-- Departments with average salary > 70000
SELECT department, AVG(salary) as avg_salary
FROM employees
GROUP BY department
HAVING AVG(salary) > 70000;
```

## Advanced Grouping

### GROUP BY ALL
```sql
-- Automatically group by all non-aggregate columns
SELECT department, job_title, COUNT(*) as count
FROM employees
GROUP BY ALL;
```

## Advanced Grouping Extensions

Databend supports SQL:2003 standard grouping extensions:

- **[ROLLUP](./groupby/group-by-rollup.md)** - Hierarchical subtotals
- **[CUBE](./groupby/group-by-cube.md)** - All possible combinations
- **[GROUPING SETS](./groupby/group-by-grouping-sets.md)** - Custom combinations

## Best Practices

1. **Use appropriate aggregates** - COUNT(*) vs COUNT(column)
2. **Filter before grouping** - Use WHERE before GROUP BY
3. **Use HAVING for aggregate conditions** - Filter groups after aggregation
4. **Consider indexes** - GROUP BY columns should be indexed
Loading
Loading