TDengine is an open-sourced big data platform under GNU AGPL v3.0, designed and optimized for the Internet of Things (IoT), Connected Cars, Industrial IoT, and IT Infrastructure and Application Monitoring. Besides the 10x faster time-series database, it provides caching, stream computing, message queuing and other functionalities to reduce the complexity and cost of development and operation.
-
10x Faster on Insert/Query Speeds: Through the innovative design on storage, on a single-core machine, over 20K requests can be processed, millions of data points can be ingested, and over 10 million data points can be retrieved in a second. It is 10 times faster than other databases.
-
1/5 Hardware/Cloud Service Costs: Compared with typical big data solutions, less than 1/5 of computing resources are required. Via column-based storage and tuned compression algorithms for different data types, less than 1/10 of storage space is needed.
-
Full Stack for Time-Series Data: By integrating a database with message queuing, caching, and stream computing features together, it is no longer necessary to integrate Kafka/Redis/HBase/Spark or other software. It makes the system architecture much simpler and more robust.
-
Powerful Data Analysis: Whether it is 10 years or one minute ago, data can be queried just by specifying the time range. Data can be aggregated over time, multiple time streams or both. Ad Hoc queries or analyses can be executed via TDengine shell, Python, R or Matlab.
-
Seamless Integration with Other Tools: Telegraf, Grafana, Matlab, R, and other tools can be integrated with TDengine without a line of code. MQTT, OPC, Hadoop, Spark, and many others will be integrated soon.
-
Zero Management, No Learning Curve: It takes only seconds to download, install, and run it successfully; there are no other dependencies. Automatic partitioning on tables or DBs. Standard SQL is used, with C/C++, Python, JDBC, Go and RESTful connectors.
For user manual, system design and architecture, engineering blogs, refer to TDengine Documentation(中文版请点击这里) for details. The documentation from our website can also be downloaded locally from documentation/tdenginedocs-en or documentation/tdenginedocs-cn.
At the moment, TDengine only supports building and running on Linux systems. You can choose to install from packages or from the source code. This quick guide is for installation from the source only.
To build TDengine, use CMake 3.5 or higher versions in the project directory.
sudo apt-get install -y gcc cmake build-essential git
sudo apt-get install -y gcc cmake3 build-essential git binutils-2.26
export PATH=/usr/lib/binutils-2.26/bin:$PATH
To compile and package the JDBC driver source code, you should have a Java jdk-8 or higher and Apache Maven 2.7 or higher installed. To install openjdk-8:
sudo apt-get install -y openjdk-8-jdk
To install Apache Maven:
sudo apt-get install -y maven
sudo yum install -y gcc gcc-c++ make cmake3 epel-release git
sudo yum remove -y cmake
sudo ln -s /usr/bin/cmake3 /usr/bin/cmake
To install openjdk-8:
sudo yum install -y java-1.8.0-openjdk
To install Apache Maven:
sudo yum install -y maven
sudo dnf install -y gcc gcc-c++ make cmake epel-release git
To install openjdk-8:
sudo dnf install -y java-1.8.0-openjdk
To install Apache Maven:
sudo dnf install -y maven
First of all, you may clone the source codes from github:
git clone https://github.com/taosdata/TDengine.git
cd TDengine
The connectors for go & grafana have been moved to separated repositories, so you should run this command in the TDengine directory to install them:
git submodule update --init --recursive
mkdir debug && cd debug
cmake .. && cmake --build .
To compile on an ARM processor (aarch64 or aarch32), please add option CPUTYPE as below:
aarch64:
cmake .. -DCPUTYPE=aarch64 && cmake --build .
aarch32:
cmake .. -DCPUTYPE=aarch32 && cmake --build .
If you use the Visual Studio 2013, please open a command window by executing "cmd.exe". Please specify "x86_amd64" for 64 bits Windows or specify "x86" is for 32 bits Windows when you execute vcvarsall.bat.
mkdir debug && cd debug
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" < x86_amd64 | x86 >
cmake .. -G "NMake Makefiles"
nmake
If you use the Visual Studio 2019, please open a command window by executing "cmd.exe". Please specify "x64" for 64 bits Windows or specify "x86" is for 32 bits Windows when you execute vcvarsall.bat.
mkdir debug && cd debug
"c:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat" < x64 | x86 >
cmake .. -G "NMake Makefiles"
nmake
Or, you can open a command window by clicking Visual Studio 2019 menu "Tools -> Command Line -> Developer Command Prompt" or "Tools -> Command Line -> Developer PowerShell" then execute commands as follows:
mkdir debug && cd debug
cmake .. -G "NMake Makefiles"
nmake
To quickly start a TDengine server after building, run the command below in terminal:
./build/bin/taosd -c test/cfg
In another terminal, use the TDengine shell to connect the server:
./build/bin/taos -c test/cfg
option "-c test/cfg" specifies the system configuration file directory.
After building successfully, TDengine can be installed by:
make install
Users can find more information about directories installed on the system in the directory and files section. It should be noted that installing from source code does not configure service management for TDengine. Users can also choose to install from packages for it.
To start the service after installation, in a terminal, use:
taosd
Then users can use the TDengine shell to connect the TDengine server. In a terminal, use:
taos
If TDengine shell connects the server successfully, welcome messages and version info are printed. Otherwise, an error message is shown.
It is easy to run SQL commands from TDengine shell which is the same as other SQL databases.
create database db;
use db;
create table t (ts timestamp, a int);
insert into t values ('2019-07-15 00:00:00', 1);
insert into t values ('2019-07-15 01:00:00', 2);
select * from t;
drop database db;
TDengine provides abundant developing tools for users to develop on TDengine. Follow the links below to find your desired connectors and relevant documentation.
The TDengine community has also kindly built some of their own connectors! Follow the links below to find the source code for them.
TDengine's test framework and all test cases are fully open source. Please refer to this document for how to run test and develop new test case.
- Support event-driven stream computing
- Support user defined functions
- Support MQTT connection
- Support OPC connection
- Support Hadoop, Spark connections
- Support Tableau and other BI tools
Please follow the contribution guidelines to contribute to the project.
Add WeChat “tdengine” to join the group,you can communicate with other users.