A library of tools for numerical methods used in engineering applications.
.
├── figures
│ ├── functions
│ │ ├── f1.eps
│ │ ├── f2.eps
│ │ ├── f3.eps
│ │ ├── f4.eps
│ │ └── f5.eps
│ ├── jacobi.eps
│ ├── open-flowchart.eps
│ └── roots
│ ├── f1.eps
│ ├── f1.txt
│ ├── f2.eps
│ ├── f2.txt
│ ├── f3.eps
│ ├── f3.txt
│ ├── f4.eps
│ ├── f4.txt
│ ├── f5.eps
│ ├── f5.txt
│ └── figures
│ └── roots
├── functions
│ ├── delta1.m
│ ├── delta2.m
│ ├── delta3.m
│ ├── delta4.m
│ ├── delta5.m
│ ├── f1.m
│ ├── f2.m
│ ├── f3.m
│ ├── f4.m
│ └── f5.m
├── gauss_jordan.m
├── gauss_seidel_legacy.m
├── gauss_test.m
├── integration
│ ├── f_test.m
│ ├── integrate.m
│ ├── README.md
│ ├── report
│ │ ├── figures
│ │ │ └── uneven.eps
│ │ └── report.pdf
│ ├── simpson13.m
│ ├── simpson38.m
│ ├── test.m
│ └── trapezoidal.m
├── jacobi.m
├── jacobi_test.m
├── LICENSE
├── matrices
│ └── linear_eq.mat
├── octave
│ ├── bisect.m
│ ├── bisect_test.m
│ ├── bisect_test_script.m
│ ├── bracketing.m
│ ├── compute_ea.m
│ ├── gauss_seidel.m
│ ├── newton_raphson.m
│ └── open_method.m
├── plot_f.m
├── README.md
└── roots
├── bracketing.m
├── compute_ea.m
├── generic_secant.m
├── legacy
│ ├── bisect.m
│ ├── bisect_test.m
│ └── bisect_test_script.m
├── newton_raphson.m
├── solutions
│ ├── f1.txt
│ └── figures
│ └── roots
└── solveplot.m
This readme is to describe folder structures and the nitty-gritty details of what each file can do. For an overall description, please see the reports compiled in Latex. This readme is accompanied by two technical reports for each part.
- Bisection Method
- False Position Method
- Secant Method
- Modified Secant Method
- Newton-Raphson Method
- Gauss-Jordan Elimination
- Jacobi Iteration of Gauss-Seidel
We place functions and their derivatives in functions. A function for the ($i)ith test is called f$i.m and its derivative is called delta$i.m
.
├── f_test.m The test function as a blackbox [please see the report]
├── integrate.m Numerical Integration for given uneven segments
├── simpson13.m Simpson's 1/3 rule
├── simpson38.m Simpson's 3/8 rule
├── test.m A test script to test the whole script
└── trapezoidal.m The trapezoidal rule
- Since the goal is to eventually code an algorithm to evaluate the integral by using combinations of the rules [as written in the project requirements], we code only single application of each of them and leave the multiple application for the combining algorithm.