Skip to content

Model components of the Llama Stack APIs

License

Notifications You must be signed in to change notification settings

deepinfra/llama-stack

 
 

Repository files navigation

Llama Stack

PyPI version PyPI - Downloads Discord

This repository contains the Llama Stack API specifications as well as API Providers and Llama Stack Distributions.

The Llama Stack defines and standardizes the building blocks needed to bring generative AI applications to market. These blocks span the entire development lifecycle: from model training and fine-tuning, through product evaluation, to building and running AI agents in production. Beyond definition, we are building providers for the Llama Stack APIs. These were developing open-source versions and partnering with providers, ensuring developers can assemble AI solutions using consistent, interlocking pieces across platforms. The ultimate goal is to accelerate innovation in the AI space.

The Stack APIs are rapidly improving, but still very much work in progress and we invite feedback as well as direct contributions.

APIs

The Llama Stack consists of the following set of APIs:

  • Inference
  • Safety
  • Memory
  • Agentic System
  • Evaluation
  • Post Training
  • Synthetic Data Generation
  • Reward Scoring

Each of the APIs themselves is a collection of REST endpoints.

API Providers

A Provider is what makes the API real -- they provide the actual implementation backing the API.

As an example, for Inference, we could have the implementation be backed by open source libraries like [ torch | vLLM | TensorRT ] as possible options.

A provider can also be just a pointer to a remote REST service -- for example, cloud providers or dedicated inference providers could serve these APIs.

Llama Stack Distribution

A Distribution is where APIs and Providers are assembled together to provide a consistent whole to the end application developer. You can mix-and-match providers -- some could be backed by local code and some could be remote. As a hobbyist, you can serve a small model locally, but can choose a cloud provider for a large model. Regardless, the higher level APIs your app needs to work with don't need to change at all. You can even imagine moving across the server / mobile-device boundary as well always using the same uniform set of APIs for developing Generative AI applications.

Supported Llama Stack Implementations

API Providers

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node ✔️ ✔️ ✔️ ✔️ ✔️
Fireworks Hosted ✔️ ✔️ ✔️
AWS Bedrock Hosted ✔️ ✔️
Together Hosted ✔️ ✔️ ✔️
Ollama Single Node ✔️
TGI Hosted and Single Node ✔️
Chroma Single Node ✔️
PG Vector Single Node ✔️
PyTorch ExecuTorch On-device iOS ✔️ ✔️

Distributions

Distribution Provider Docker Inference Memory Safety Telemetry
Meta Reference Local GPU, Local CPU ✔️ ✔️ ✔️ ✔️
Dell-TGI Local TGI + Chroma ✔️ ✔️ ✔️ ✔️

Installation

You can install this repository as a package with pip install llama-stack

If you want to install from source:

mkdir -p ~/local
cd ~/local
git clone git@github.com:meta-llama/llama-stack.git

conda create -n stack python=3.10
conda activate stack

cd llama-stack
$CONDA_PREFIX/bin/pip install -e .

Documentations

The llama CLI makes it easy to work with the Llama Stack set of tools. Please find the following docs for details.

  • CLI reference
    • Guide using llama CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution.
  • Getting Started
    • Guide to build and run a Llama Stack server.
  • Contributing

Llama Stack Client SDK

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift
Node llama-stack-client-node NPM version
Kotlin llama-stack-client-kotlin

Check out our client SDKs for connecting to Llama Stack server in your preferred language, you can choose from python, node, swift, and kotlin programming languages to quickly build your applications.

About

Model components of the Llama Stack APIs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.4%
  • Swift 2.3%
  • Shell 2.2%
  • Objective-C 0.1%