Tensorflow based implementation of convolution-reccurent network for classification of human interactions on video.
Uses SDHA 2010 High-level Human Interaction Recognition Challenge dataset.
- Python 3.5.2
- Tensorflow > 1.0
- Python OpenCV > 3.0
Example:
python main.py --lrate 0.001 --update
Parameter | Default value | Description |
---|---|---|
epoch |
1 | Number of epoch |
esize |
50 | Size of examples |
estep |
20 | Length of step for grouping frames into examples |
height |
240 | Height of frames |
width |
320 | Width of frames |
lrate |
1e-4 | Learning rate |
logdir |
network/logs | Path to store logs and checkpoints |
conv |
standard | Type of CNN block (inception/vgg16) |
rnn |
GRU | Type of RNN block (LSTM/GRU) |
update |
False | Re-Generate TFRecords |
download |
False | Download dataset |
restore |
False | Restore from previous checkpoint |
test |
False | Test evaluation |