Skip to content

feat: add solutions to lc problem: No.2831 #2870

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions .github/workflows/deploy.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,7 @@ on:
push:
branches:
- main
- docs
paths:
- package.json
- requirements.txt
- solution/**
- lcs/**
- lcp/**
Expand Down
130 changes: 130 additions & 0 deletions solution/2800-2899/2831.Find the Longest Equal Subarray/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -179,4 +179,134 @@ function longestEqualSubarray(nums: number[], k: number): number {

<!-- solution:end -->

<!-- solution:start -->

### 方法二:哈希表 + 双指针(写法二)

我们可以用一个哈希表 $g$ 维护每个元素的下标列表。

接下来,我们枚举每个元素作为等值元素,我们从哈希表 $g$ 中取出这个元素的下标列表 $ids$,然后我们定义两个指针 $l$ 和 $r$,用于维护一个窗口,使得窗口内的元素个数减去等值元素的个数,结果不超过 $k$。那么我们只需要求出最大的满足条件的窗口即可。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组的长度。

<!-- tabs:start -->

#### Python3

```python
class Solution:
def longestEqualSubarray(self, nums: List[int], k: int) -> int:
g = defaultdict(list)
for i, x in enumerate(nums):
g[x].append(i)
ans = 0
for ids in g.values():
l = 0
for r in range(len(ids)):
while ids[r] - ids[l] - (r - l) > k:
l += 1
ans = max(ans, r - l + 1)
return ans
```

#### Java

```java
class Solution {
public int longestEqualSubarray(List<Integer> nums, int k) {
int n = nums.size();
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, i -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
g[nums.get(i)].add(i);
}
int ans = 0;
for (List<Integer> ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids.get(r) - ids.get(l) - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}
}
```

#### C++

```cpp
class Solution {
public:
int longestEqualSubarray(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g[n + 1];
for (int i = 0; i < n; ++i) {
g[nums[i]].push_back(i);
}
int ans = 0;
for (const auto& ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = max(ans, r - l + 1);
}
}
return ans;
}
};
```

#### Go

```go
func longestEqualSubarray(nums []int, k int) (ans int) {
g := make([][]int, len(nums)+1)
for i, x := range nums {
g[x] = append(g[x], i)
}
for _, ids := range g {
l := 0
for r := range ids {
for ids[r]-ids[l]-(r-l) > k {
l++
}
ans = max(ans, r-l+1)
}
}
return
}
```

#### TypeScript

```ts
function longestEqualSubarray(nums: number[], k: number): number {
const n = nums.length;
const g: number[][] = Array.from({ length: n + 1 }, () => []);
for (let i = 0; i < n; ++i) {
g[nums[i]].push(i);
}
let ans = 0;
for (const ids of g) {
let l = 0;
for (let r = 0; r < ids.length; ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->
130 changes: 130 additions & 0 deletions solution/2800-2899/2831.Find the Longest Equal Subarray/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -177,4 +177,134 @@ function longestEqualSubarray(nums: number[], k: number): number {

<!-- solution:end -->

<!-- source:start -->

### Solution 2: Hash Table + Two Pointers (Method 2)

We can use a hash table $g$ to maintain the index list of each element.

Next, we enumerate each element as the equal value element. We take out the index list $ids$ of this element from the hash table $g$. Then we define two pointers $l$ and $r$ to maintain a window, so that the number of elements in the window minus the number of equal value elements does not exceed $k$. Therefore, we only need to find the largest window that meets the condition.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array.

<!-- tabs:start -->

#### Python3

```python
class Solution:
def longestEqualSubarray(self, nums: List[int], k: int) -> int:
g = defaultdict(list)
for i, x in enumerate(nums):
g[x].append(i)
ans = 0
for ids in g.values():
l = 0
for r in range(len(ids)):
while ids[r] - ids[l] - (r - l) > k:
l += 1
ans = max(ans, r - l + 1)
return ans
```

#### Java

```java
class Solution {
public int longestEqualSubarray(List<Integer> nums, int k) {
int n = nums.size();
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, i -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
g[nums.get(i)].add(i);
}
int ans = 0;
for (List<Integer> ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids.get(r) - ids.get(l) - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}
}
```

#### C++

```cpp
class Solution {
public:
int longestEqualSubarray(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g[n + 1];
for (int i = 0; i < n; ++i) {
g[nums[i]].push_back(i);
}
int ans = 0;
for (const auto& ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = max(ans, r - l + 1);
}
}
return ans;
}
};
```

#### Go

```go
func longestEqualSubarray(nums []int, k int) (ans int) {
g := make([][]int, len(nums)+1)
for i, x := range nums {
g[x] = append(g[x], i)
}
for _, ids := range g {
l := 0
for r := range ids {
for ids[r]-ids[l]-(r-l) > k {
l++
}
ans = max(ans, r-l+1)
}
}
return
}
```

#### TypeScript

```ts
function longestEqualSubarray(nums: number[], k: number): number {
const n = nums.length;
const g: number[][] = Array.from({ length: n + 1 }, () => []);
for (let i = 0; i < n; ++i) {
g[nums[i]].push(i);
}
let ans = 0;
for (const ids of g) {
let l = 0;
for (let r = 0; r < ids.length; ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}
```

<!-- tabs:end -->

<!-- solution:end -->

<!-- problem:end -->
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
class Solution {
public:
int longestEqualSubarray(vector<int>& nums, int k) {
int n = nums.size();
vector<int> g[n + 1];
for (int i = 0; i < n; ++i) {
g[nums[i]].push_back(i);
}
int ans = 0;
for (const auto& ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = max(ans, r - l + 1);
}
}
return ans;
}
};
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
func longestEqualSubarray(nums []int, k int) (ans int) {
g := make([][]int, len(nums)+1)
for i, x := range nums {
g[x] = append(g[x], i)
}
for _, ids := range g {
l := 0
for r := range ids {
for ids[r]-ids[l]-(r-l) > k {
l++
}
ans = max(ans, r-l+1)
}
}
return
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
class Solution {
public int longestEqualSubarray(List<Integer> nums, int k) {
int n = nums.size();
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, i -> new ArrayList<>());
for (int i = 0; i < n; ++i) {
g[nums.get(i)].add(i);
}
int ans = 0;
for (List<Integer> ids : g) {
int l = 0;
for (int r = 0; r < ids.size(); ++r) {
while (ids.get(r) - ids.get(l) - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
class Solution:
def longestEqualSubarray(self, nums: List[int], k: int) -> int:
g = defaultdict(list)
for i, x in enumerate(nums):
g[x].append(i)
ans = 0
for ids in g.values():
l = 0
for r in range(len(ids)):
while ids[r] - ids[l] - (r - l) > k:
l += 1
ans = max(ans, r - l + 1)
return ans
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
function longestEqualSubarray(nums: number[], k: number): number {
const n = nums.length;
const g: number[][] = Array.from({ length: n + 1 }, () => []);
for (let i = 0; i < n; ++i) {
g[nums[i]].push(i);
}
let ans = 0;
for (const ids of g) {
let l = 0;
for (let r = 0; r < ids.length; ++r) {
while (ids[r] - ids[l] - (r - l) > k) {
++l;
}
ans = Math.max(ans, r - l + 1);
}
}
return ans;
}