Skip to content

feat: add solutions to lcof problem: No.60 #2911

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
May 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 140 additions & 29 deletions lcof/面试题60. n个骰子的点数/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,11 +51,11 @@ $$
f[i][j] = \sum_{k=1}^6 f[i-1][j-k]
$$

其中 $k$ 表示当前骰子的点数,$f[i-1][j-k]$ 表示投掷 $i-1$ 个骰子,点数和为 $j-k$ 的方案数。
其中 $k$ 表示当前骰子的点数,$f[i-1][j-k]$ 表示投掷 $i-1$ 个骰子,点数和为 $j-k$ 的方案数。

最终我们需要求的是 $f[n][n \sim 6n]$ 的和,即投掷 $n$ 个骰子,点数和为 $n \sim 6n$ 的方案数之和
初始条件为 $f[1][j] = 1$,表示投掷一个骰子,点数和为 $j$ 的方案数为 $1$

注意到 $f[i][j]$ 的值只与 $f[i-1][j-k]$ 有关,因此我们可以使用滚动数组的方法将空间复杂度降低到 $O(6n)$。
最终,我们要求的答案即为 $\frac{f[n][j]}{6^n}$,其中 $n$ 为骰子个数,而 $j$ 的取值范围为 $[n, 6n]$。

时间复杂度 $O(n^2)$,空间复杂度 $O(6n)$。其中 $n$ 为骰子个数。

Expand All @@ -75,7 +75,7 @@ class Solution:
if j - k >= 0:
f[i][j] += f[i - 1][j - k]
m = pow(6, n)
return [f[n][i] / m for i in range(n, 6 * n + 1)]
return [f[n][j] / m for j in range(n, 6 * n + 1)]
```

#### Java
Expand All @@ -98,8 +98,8 @@ class Solution {
}
double m = Math.pow(6, n);
double[] ans = new double[5 * n + 1];
for (int i = 0; i < ans.length; ++i) {
ans[i] = f[n][n + i] / m;
for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[n][j] / m;
}
return ans;
}
Expand All @@ -126,10 +126,10 @@ public:
}
}
}
vector<double> ans(5 * n + 1);
vector<double> ans;
double m = pow(6, n);
for (int i = 0; i < ans.size(); ++i) {
ans[i] = f[n][n + i] / m;
for (int j = n; j <= 6 * n; ++j) {
ans.push_back(f[n][j] / m);
}
return ans;
}
Expand Down Expand Up @@ -199,20 +199,29 @@ var dicesProbability = function (n) {
```cs
public class Solution {
public double[] DicesProbability(int n) {
var bp = new double[6];
for (int i = 0; i < 6; i++) {
bp[i] = 1 / 6.0;
int[,] f = new int[n + 1, 6 * n + 1];

for (int j = 1; j <= 6; ++j) {
f[1, j] = 1;
}
double[] ans = new double[]{1};
for (int i = 1; i <= n; i++) {
var tmp = ans;
ans = new double[tmp.Length + 5];
for (int i1 = 0; i1 < tmp.Length; i1++) {
for (int i2 = 0; i2 < bp.Length; i2++) {
ans[i1+i2] += tmp[i1] * bp[i2];

for (int i = 2; i <= n; ++i) {
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j >= k) {
f[i, j] += f[i - 1, j - k];
}
}
}
}

double m = Math.Pow(6, n);
double[] ans = new double[5 * n + 1];

for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[n, j] / m;
}

return ans;
}
}
Expand All @@ -224,7 +233,9 @@ public class Solution {

<!-- solution:start-->

### 方法二
### 方法二:动态规划(空间优化)

我们可以发现,上述方法中的 $f[i][j]$ 的值仅与 $f[i-1][j-k]$ 有关,因此我们可以使用滚动数组的方式,将空间复杂度优化至 $O(6n)$。

<!-- tabs:start -->

Expand All @@ -245,25 +256,125 @@ class Solution:
return [f[j] / m for j in range(n, 6 * n + 1)]
```

#### Java

```java
class Solution {
public double[] dicesProbability(int n) {
int[] f = new int[7];
Arrays.fill(f, 1);
f[0] = 0;
for (int i = 2; i <= n; ++i) {
int[] g = new int[6 * i + 1];
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j - k >= 0 && j - k < f.length) {
g[j] += f[j - k];
}
}
}
f = g;
}
double m = Math.pow(6, n);
double[] ans = new double[5 * n + 1];
for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[j] / m;
}
return ans;
}
}
```

#### Go

```go
func dicesProbability(n int) []float64 {
dp := make([]float64, 7)
func dicesProbability(n int) (ans []float64) {
f := make([]int, 7)
for i := 1; i <= 6; i++ {
dp[i] = 1.0 / 6.0
f[i] = 1
}

for i := 2; i <= n; i++ {
n := len(dp)
tmp := make([]float64, 6*i+1)
for j := 0; j < n; j++ {
g := make([]int, 6*i+1)
for j := i; j <= 6*i; j++ {
for k := 1; k <= 6; k++ {
tmp[j+k] += dp[j] / 6.0
if j-k >= 0 && j-k < len(f) {
g[j] += f[j-k]
}
}
}
dp = tmp
f = g
}
return dp[n:]

m := math.Pow(6, float64(n))
for j := n; j <= 6*n; j++ {
ans = append(ans, float64(f[j])/m)
}
return
}
```

#### JavaScript

```js
/**
* @param {number} num
* @return {number[]}
*/
var dicesProbability = function (n) {
let f = Array(7).fill(1);
f[0] = 0;
for (let i = 2; i <= n; ++i) {
let g = Array(6 * i + 1).fill(0);
for (let j = i; j <= 6 * i; ++j) {
for (let k = 1; k <= 6; ++k) {
if (j - k >= 0 && j - k < f.length) {
g[j] += f[j - k];
}
}
}
f = g;
}

const ans = [];
const m = Math.pow(6, n);
for (let j = n; j <= 6 * n; ++j) {
ans.push(f[j] / m);
}
return ans;
};
```

#### C#

```cs
public class Solution {
public double[] DicesProbability(int n) {
int[] f = new int[7];
for (int i = 1; i <= 6; ++i) {
f[i] = 1;
}
f[0] = 0;

for (int i = 2; i <= n; ++i) {
int[] g = new int[6 * i + 1];
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j - k >= 0 && j - k < f.Length) {
g[j] += f[j - k];
}
}
}
f = g;
}

double m = Math.Pow(6, n);
double[] ans = new double[5 * n + 1];
for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[j] / m;
}
return ans;
}
}
```

Expand Down
6 changes: 3 additions & 3 deletions lcof/面试题60. n个骰子的点数/Solution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,10 @@ class Solution {
}
}
}
vector<double> ans(5 * n + 1);
vector<double> ans;
double m = pow(6, n);
for (int i = 0; i < ans.size(); ++i) {
ans[i] = f[n][n + i] / m;
for (int j = n; j <= 6 * n; ++j) {
ans.push_back(f[n][j] / m);
}
return ans;
}
Expand Down
31 changes: 20 additions & 11 deletions lcof/面试题60. n个骰子的点数/Solution.cs
Original file line number Diff line number Diff line change
@@ -1,19 +1,28 @@
public class Solution {
public double[] DicesProbability(int n) {
var bp = new double[6];
for (int i = 0; i < 6; i++) {
bp[i] = 1 / 6.0;
int[,] f = new int[n + 1, 6 * n + 1];

for (int j = 1; j <= 6; ++j) {
f[1, j] = 1;
}
double[] ans = new double[]{1};
for (int i = 1; i <= n; i++) {
var tmp = ans;
ans = new double[tmp.Length + 5];
for (int i1 = 0; i1 < tmp.Length; i1++) {
for (int i2 = 0; i2 < bp.Length; i2++) {
ans[i1+i2] += tmp[i1] * bp[i2];

for (int i = 2; i <= n; ++i) {
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j >= k) {
f[i, j] += f[i - 1, j - k];
}
}
}
}

double m = Math.Pow(6, n);
double[] ans = new double[5 * n + 1];

for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[n, j] / m;
}

return ans;
}
}
}
4 changes: 2 additions & 2 deletions lcof/面试题60. n个骰子的点数/Solution.java
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@ public double[] dicesProbability(int n) {
}
double m = Math.pow(6, n);
double[] ans = new double[5 * n + 1];
for (int i = 0; i < ans.length; ++i) {
ans[i] = f[n][n + i] / m;
for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[n][j] / m;
}
return ans;
}
Expand Down
2 changes: 1 addition & 1 deletion lcof/面试题60. n个骰子的点数/Solution.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,4 @@ def dicesProbability(self, n: int) -> List[float]:
if j - k >= 0:
f[i][j] += f[i - 1][j - k]
m = pow(6, n)
return [f[n][i] / m for i in range(n, 6 * n + 1)]
return [f[n][j] / m for j in range(n, 6 * n + 1)]
24 changes: 24 additions & 0 deletions lcof/面试题60. n个骰子的点数/Solution2.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
class Solution {
public:
vector<double> dicesProbability(int n) {
vector<int> f(7, 1);
f[0] = 0;
for (int i = 2; i <= n; ++i) {
vector<int> g(6 * i + 1, 0);
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j - k >= 0 && j - k < f.size()) {
g[j] += f[j - k];
}
}
}
f = move(g);
}
double m = pow(6, n);
vector<double> ans;
for (int j = n; j <= 6 * n; ++j) {
ans.push_back(f[j] / m);
}
return ans;
}
};
28 changes: 28 additions & 0 deletions lcof/面试题60. n个骰子的点数/Solution2.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
public class Solution {
public double[] DicesProbability(int n) {
int[] f = new int[7];
for (int i = 1; i <= 6; ++i) {
f[i] = 1;
}
f[0] = 0;

for (int i = 2; i <= n; ++i) {
int[] g = new int[6 * i + 1];
for (int j = i; j <= 6 * i; ++j) {
for (int k = 1; k <= 6; ++k) {
if (j - k >= 0 && j - k < f.Length) {
g[j] += f[j - k];
}
}
}
f = g;
}

double m = Math.Pow(6, n);
double[] ans = new double[5 * n + 1];
for (int j = n; j <= 6 * n; ++j) {
ans[j - n] = f[j] / m;
}
return ans;
}
}
25 changes: 16 additions & 9 deletions lcof/面试题60. n个骰子的点数/Solution2.go
Original file line number Diff line number Diff line change
@@ -1,17 +1,24 @@
func dicesProbability(n int) []float64 {
dp := make([]float64, 7)
func dicesProbability(n int) (ans []float64) {
f := make([]int, 7)
for i := 1; i <= 6; i++ {
dp[i] = 1.0 / 6.0
f[i] = 1
}

for i := 2; i <= n; i++ {
n := len(dp)
tmp := make([]float64, 6*i+1)
for j := 0; j < n; j++ {
g := make([]int, 6*i+1)
for j := i; j <= 6*i; j++ {
for k := 1; k <= 6; k++ {
tmp[j+k] += dp[j] / 6.0
if j-k >= 0 && j-k < len(f) {
g[j] += f[j-k]
}
}
}
dp = tmp
f = g
}
return dp[n:]

m := math.Pow(6, float64(n))
for j := n; j <= 6*n; j++ {
ans = append(ans, float64(f[j])/m)
}
return
}
Loading