Ask questions directly to your PDFs.
This project provides a Flask backend that allows you to:
- Upload PDFs
- Extract and embed text into a vector database (Pinecone/Weaviate/Faiss)
- Query documents via a REST or GraphQL API
- 📄 Upload PDFs – research papers, reports, manuals, or any document
- 🧩 Text Extraction – automatically parses PDF text
- 🧠 AI Embeddings – generates vector representations of document chunks
- 📦 Vector Database – stores embeddings in Pinecone / Weaviate / Faiss
- 🔎 Intelligent Search – query documents in natural language (“Ask your PDF”)
- 🌐 API Ready – REST + optional GraphQL endpoints for easy integration
- 💻 Frontend Friendly – works with Next.js, React, or any frontend
- Backend: Flask (Python)
- Database: Pinecone / Weaviate / Faiss
- AI Embeddings: OpenAI / Hugging Face
- API: REST + GraphQL (optional)
- Frontend (Demo): Next.js
.
├── app.py # Flask app entry point
├── routes/ # API routes (upload, query, etc.)
├── services/ # PDF parsing, embedding, DB handling
└── README.md # Documentation