Skip to content

effiken/scDissector

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
 
 
man
 
 
 
 
 
 
 
 
 
 

Installation

  1. Install R (in case you don't have it already installed):

    Download and install R.

    You may want to install RStudio as well.

  2. Install devtools package in R (in case you don't have it already installed):

    install.packages("devtools")

    library(devtools)

  3. Install scDissector:

    install_github("effiken/scDissector")

Update

  1. Load devtools

library(devtools)

  1. Install the package as in (3) above

Running scDissector in R

library(scDissector)

run_scDissector()

or

run_scDissector(clustering_data_path =**["PATH"]**)

Loading the data prior to running scDissector

Loading the data prior to running scDissector is recommended:

ldm = load_scDissector_data(clustering_data_path=**["PATH"]**, model_name=[STRING], sample_names=[VECTOR_OF_STRINGS])

run_scDissector(preloaded_data = ldm, clustering_data_path = **["PATH"]**)

Loading Seurat Object and running scDissector

ldm=load_seurat_rds("[seurat_rds_file_path]",model_name,clustering_data_path=**["PATH"]**)

run_scDissector(preloaded_data = ldm, clustering_data_path = **["PATH"]**)

Loading MetcCell Object and running scDissector

ldm=load_metacell_clustering(mc_file,mat_file,model_name,clustering_data_path=["PATH"])`

run_scDissector(preloaded_data = ldm, clustering_data_path = **["PATH"]**)

scDissector-powered websites

https://scDissector.org/martin (Martin et al. Cell 2019)

About

scDissector is an exploratory data analysis tool for clustered single-cell RNA-seq data. The tool has been developed and implemented as R shiny app by Ephraim (Effi) Kenigsberg

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages