Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Quantized Convolutional networks using PyTorch

See https://github.com/eladhoffer/convNet.pytorch for updated version of this code

Code to replicate results in Scalable Methods for 8-bit Training of Neural Networks

e.g: running an 8-bit quantized resnet18 from the paper on ImageNet

python main.py --model resnet_quantized --model_config "{'depth': 18}" --save quantized_resnet18 --dataset imagenet --b 128

Dependencies

Data

  • Configure your dataset path at data.py.
  • To get the ILSVRC data, you should register on their site for access: http://www.image-net.org/

Model configuration

Network model is defined by writing a .py file in models folder, and selecting it using the model flag. Model function must be registered in models/__init__.py The model function must return a trainable network. It can also specify additional training options such optimization regime (either a dictionary or a function), and input transform modifications.

e.g for a model definition:

class Model(nn.Module):

    def __init__(self, num_classes=1000):
        super(Model, self).__init__()
        self.model = nn.Sequential(...)

        self.regime = [
            {'epoch': 0, 'optimizer': 'SGD', 'lr': 1e-2,
                'weight_decay': 5e-4, 'momentum': 0.9},
            {'epoch': 15, 'lr': 1e-3, 'weight_decay': 0}
        ]

        self.input_transform = {
            'train': transforms.Compose([...]),
            'eval': transforms.Compose([...])
        }
    def forward(self, inputs):
        return self.model(inputs)
        
 def model(**kwargs):
        return Model()

About

No description, website, or topics provided.

Resources

License

Releases

No releases published

Packages

No packages published

Languages