Skip to content

emilydolson/python-red-black-trees

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python red-black trees

Python package codecov

A Python implementation of red-black trees. This code was originally copied from programiz.com, but I have made a few tweaks to improve the user interface. I have also fixed a hard-to-catch but serious bug in the original implementation (which has since been propogated to a number of tutorials on the internet), and added a rigorous testing suite to ensure there are no further bugs.

What is this for?

I made this repo so that students in my algorithms class can try out red-black trees without needing to use C++. Feel free to use it for similar educational purposes! For more practical use-cases, you're probably better off using the SortedContainers library, which is more efficient, more scalable, and better maintained.

Documentation

This data structure is designed to be used either as a standard red-black binary search tree or as a red-black tree backed dictionary.

Standard red-black tree interface

Constructor

A new red-black tree can be constructed as follows:

bst = RedBlackTree()

Insert

Items can be inserted into a tree using the insert method:

bst.insert(5)  # inserts a node with value 5

Delete

Items can be removed from the tree using the delete method. This method will do nothing if there is no item in the tree with the specific key.

bst.delete(5)  # removes a node with value 5

Minimum and maximum

The minimum and maximum value in the tree can be found with the corresponding methods. If the tree is empty, these methods will both return the special value bst.TNULL

bst.minimum()  # returns minimum value
bst.maximum()  # returns maximum value

bst.minimum() == bst.TNULL  # Check whether tree is empty

Tree size

Tree size can be accessed via the size member variable:

bst.size  # contains the tree's size

Search

To find a specific item in the tree, you can use the search method:

bst.search(6)  # returns the node containing 6. Will return bst.TNULL if item is not present.

Predecessor and successor

To get a node's predecessor or sucessor;

bst.predecessor(bst.search(6))  # Gets the predecessor a node containing 6
bst.successor(bst.search(6))  # Gets the successor a node containing 6

Printing

To know more about the contents of the tree, you can print it to stdout:

bst.print_tree()  # prints an ASCII representation of the whole tree

Traversals

To contents of the tree can be collected into an array in any of three ways. The tree itself can be used anywhere a collection is used.

bst.preorder()      # creates a preorder traversal list
bst.inorder()       # creates an inorder traveral list
bst.postorder()     # creates a postorder traversal list

key_string = ""
bst.set_iteration_style("pre")
for node in bst:
    key_string += str(node.get_key()) + " "

Dictionary interface

bst[80] = 4  # Store the value 4 with the key 80
bst[80]      # Retrieve the value associated with the key 80

Releases

No releases published

Packages

No packages published

Languages