Skip to content

Some model parameters or buffers are not found in the checkpoint #4090

@RichardcLee

Description

@RichardcLee

Expected behavior:

It should load all my model weights.

SOS!Why detectron2 version==0.4,can not load my whole model weights?

image

Instructions To Reproduce the 🐛 Bug:

  1. What exact command you run:
    python projects/CenterNet2/train_net.py --config-file projects/CenterNet2/configs/OurNet_R101_DCN.yaml --eval-only MODEL.WEIGHTS D:\MyFile\dataset\model\processed+aerial_processes\OurNet_R101_DCN\model_0069999.pth

  2. Full logs or other relevant observations:

 Command Line Args: Namespace(config_file='projects/CenterNet2/configs/OurNet_R101_DCN.yaml', dist_url='tcp://127.0.0.1:46263', eval_only=True, machine_rank=0, manual_device='', num_gpus=1
, num_machines=1, opts=['MODEL.WEIGHTS', 'D:\\MyFile\\dataset\\model\\processed+aerial_processes\\OurNet_R101_DCN\\model_0069499.pth'], resume=False)
Config 'projects/CenterNet2/configs/OurNet_R101_DCN.yaml' has no VERSION. Assuming it to be compatible with latest v2.
[03/19 20:45:12 detectron2]: Rank of current process: 0. World size: 1
[03/19 20:45:13 detectron2]: Environment info:
----------------------  --------------------------------------------------------------------------------------------------
sys.platform            win32
Python                  3.7.11 (default, Jul 27 2021, 09:42:29) [MSC v.1916 64 bit (AMD64)]
numpy                   1.17.0
detectron2              0.6 @d:\myfile\projects\git projects\detectron2\detectron2
Compiler                MSVC 192628806
CUDA compiler           CUDA 10.2
detectron2 arch flags   d:\myfile\projects\git projects\detectron2\detectron2\_C.cp37-win_amd64.pyd; cannot find cuobjdump
DETECTRON2_ENV_MODULE   <not set>
PyTorch                 1.10.2+cu102 @D:\MyFile\tool\Anaconda\lib\site-packages\torch
PyTorch debug build     False
GPU available           Yes
GPU 0                   GeForce GTX 1660 Ti (arch=7.5)
Driver version          457.49
CUDA_HOME               C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2
Pillow                  8.3.1
torchvision             0.11.3+cu102 @D:\MyFile\tool\Anaconda\lib\site-packages\torchvision
torchvision arch flags  D:\MyFile\tool\Anaconda\lib\site-packages\torchvision\_C.pyd; cannot find cuobjdump
fvcore                  0.1.5
iopath                  0.1.8
cv2                     4.5.4-dev
----------------------  --------------------------------------------------------------------------------------------------
PyTorch built with:
  - C++ Version: 199711
  - MSVC 192829337
  - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  - OpenMP 2019
  - LAPACK is enabled (usually provided by MKL)
  - CPU capability usage: AVX2
  - CUDA Runtime 10.2
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=
compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  - CuDNN 7.6.5
  - Magma 2.5.4
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=10.2, CUDNN_VERSION=7.6.5, CXX_COMPILER=C:/w/b/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /
w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/w/b/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE
_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLO
G=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON,

[03/19 20:45:13 detectron2]: Command line arguments: Namespace(config_file='projects/CenterNet2/configs/OurNet_R101_DCN.yaml', dist_url='tcp://127.0.0.1:46263', eval_only=True, machine_ra
nk=0, manual_device='', num_gpus=1, num_machines=1, opts=['MODEL.WEIGHTS', 'D:\\MyFile\\dataset\\model\\processed+aerial_processes\\OurNet_R101_DCN\\model_0069499.pth'], resume=False)
[03/19 20:45:13 detectron2]: Contents of args.config_file=projects/CenterNet2/configs/OurNet_R101_DCN.yaml:
_BASE_: "Base-OurNet.yaml"
MODEL:
  OURNET:
    USE_DEFORMABLE: True
  RESNETS:
    DEPTH: 101
    DEFORM_ON_PER_STAGE: [False, False, True, True] # on Res4, Res5
    DEFORM_MODULATED: True
SOLVER:
  IMS_PER_BATCH: 1

[03/19 20:45:13 detectron2]: Running with full config:
CUDNN_BENCHMARK: false
DATALOADER:
  ASPECT_RATIO_GROUPING: true
  FILTER_EMPTY_ANNOTATIONS: true
  NUM_WORKERS: 4
  REPEAT_THRESHOLD: 0.0
  SAMPLER_TRAIN: TrainingSampler
DATASETS:
  PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
  PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
  PROPOSAL_FILES_TEST: []
  PROPOSAL_FILES_TRAIN: []
  TEST:
  - test
  TRAIN:
  - train
  - train_aerial
DEBUG: false
DEBUG_SHOW_NAME: false
GLOBAL:
  HACK: 1.0
INPUT:
  CROP:
    ENABLED: false
    SIZE:
    - 0.9
    - 0.9
    TYPE: relative_range
  CUSTOM_AUG: ''
  FORMAT: BGR
  MASK_FORMAT: polygon
  MAX_SIZE_TEST: 3200
  MAX_SIZE_TRAIN: 1200
  MIN_SIZE_TEST: 1200
  MIN_SIZE_TRAIN:
  - 500
  - 600
  - 700
  - 800
  - 900
  MIN_SIZE_TRAIN_SAMPLING: choice
  RANDOM_FLIP: horizontal
  SCALE_RANGE:
  - 0.1
  - 2.0
  TEST_INPUT_TYPE: default
  TEST_SIZE: 640
  TRAIN_SIZE: 640
MODEL:
  ANCHOR_GENERATOR:
    ANGLES:
    - - -90
      - 0
      - 90
    ASPECT_RATIOS:
    - - 0.5
      - 1.0
      - 2.0
    NAME: DefaultAnchorGenerator
    OFFSET: 0.0
    SIZES:
    - - 32
      - 64
      - 128
      - 256
      - 512
  BACKBONE:
    FREEZE_AT: 2
    NAME: build_p67_resnet_fpn_backbone
  BIFPN:
    NORM: GN
    NUM_BIFPN: 6
    NUM_LEVELS: 5
    OUT_CHANNELS: 160
    SEPARABLE_CONV: false
  CENTERNET:
    AS_PROPOSAL: false
    CENTER_NMS: false
    FPN_STRIDES:
    - 8
    - 16
    - 32
    - 64
    - 128
    GHM_BINS: 10
    GHM_LOSS_WEIGHT: 1.0
    GHM_MOMENTUM: 0
    HM_FOCAL_ALPHA: 0.25
    HM_FOCAL_BETA: 4
    HM_MIN_OVERLAP: 0.8
    IGNORE_HIGH_FP: -1.0
    INFERENCE_TH: 0.05
    IN_FEATURES:
    - p3
    - p4
    - p5
    - p6
    - p7
    LOC_LOSS_TYPE: giou
    LOSS_GAMMA: 2.0
    MIN_RADIUS: 4
    MORE_POS: false
    MORE_POS_THRESH: 0.2
    MORE_POS_TOPK: 9
    NEG_WEIGHT: 1.0
    NMS_TH_TEST: 0.6
    NMS_TH_TRAIN: 0.6
    NORM: GN
    NOT_NMS: false
    NOT_NORM_REG: true
    NUM_BOX_CONVS: 4
    NUM_CLASSES: 3
    NUM_CLS_CONVS: 4
    NUM_SHARE_CONVS: 0
    ONLY_PROPOSAL: false
    POST_NMS_TOPK_TEST: 100
    POST_NMS_TOPK_TRAIN: 100
    POS_WEIGHT: 1.0
    PRE_NMS_TOPK_TEST: 1000
    PRE_NMS_TOPK_TRAIN: 1000
    PRIOR_PROB: 0.01
    PROPOSAL_LOSS_TYPE: focal loss
    REG_WEIGHT: 2.0
    SIGMOID_CLAMP: 0.0001
    SOI:
    - - 0
      - 80
    - - 64
      - 160
    - - 128
      - 320
    - - 256
      - 640
    - - 512
      - 10000000
    USE_DEFORMABLE: false
    WITH_AGN_HM: false
  DEVICE: cuda
  DLA:
    DLAUP_IN_FEATURES:
    - dla3
    - dla4
    - dla5
    DLAUP_NODE: conv
    MS_OUTPUT: false
    NORM: BN
    NUM_LAYERS: 34
    OUT_FEATURES:
    - dla2
    USE_DLA_UP: true
  DYHEAD:
    CHANNELS: 256
    NUM_CONVS: 6
  FPN:
    FUSE_TYPE: sum
    IN_FEATURES:
    - res3
    - res4
    - res5
    NORM: ''
    OUT_CHANNELS: 256
  KEYPOINT_ON: false
  LOAD_PROPOSALS: false
  MASK_ON: false
  META_ARCHITECTURE: GeneralizedRCNN
  OURNET:
    AS_PROPOSAL: false
    CENTER_NMS: false
    FPN_STRIDES:
    - 8
    - 16
    - 32
    - 64
    - 128
    GHM_BINS: 10
    GHM_LOSS_WEIGHT: 1.0
    GHM_MOMENTUM: 0
    HM_FOCAL_ALPHA: 0.25
    HM_FOCAL_BETA: 4
    HM_MIN_OVERLAP: 0.8
    IGNORE_HIGH_FP: 0.85
    INFERENCE_TH: 0.0001
    IN_FEATURES:
    - p3
    - p4
    - p5
    - p6
    - p7
    LOC_LOSS_TYPE: giou
    LOSS_GAMMA: 2.0
    MIN_RADIUS: 4
    MORE_POS: false
    MORE_POS_THRESH: 0.2
    MORE_POS_TOPK: 9
    NEG_WEIGHT: 0.5
    NMS_TH_TEST: 0.9
    NMS_TH_TRAIN: 0.9
    NORM: GN
    NOT_NMS: false
    NOT_NORM_REG: true
    NUM_BOX_CONVS: 4
    NUM_CLASSES: 3
    NUM_CLS_CONVS: 4
    NUM_SHARE_CONVS: 0
    ONLY_PROPOSAL: true
    POST_NMS_TOPK_TEST: 256
    POST_NMS_TOPK_TRAIN: 2000
    POS_WEIGHT: 0.5
    PRE_NMS_TOPK_TEST: 1000
    PRE_NMS_TOPK_TRAIN: 4000
    PRIOR_PROB: 0.01
    PROPOSAL_LOSS_TYPE: focal loss
    REG_WEIGHT: 1.0
    SIGMOID_CLAMP: 0.0001
    SOI:
    - - 0
      - 80
    - - 64
      - 160
    - - 128
      - 320
    - - 256
      - 640
    - - 512
      - 10000000
    USE_DEFORMABLE: true
    WITH_AGN_HM: true
  PANOPTIC_FPN:
    COMBINE:
      ENABLED: true
      INSTANCES_CONFIDENCE_THRESH: 0.5
      OVERLAP_THRESH: 0.5
      STUFF_AREA_LIMIT: 4096
    INSTANCE_LOSS_WEIGHT: 1.0
  PIXEL_MEAN:
  - 103.53
  - 116.28
  - 123.675
  PIXEL_STD:
  - 1.0
  - 1.0
  - 1.0
  PROPOSAL_GENERATOR:
    MIN_SIZE: 0
    NAME: OurNet
  RESNETS:
    DEFORM_MODULATED: true
    DEFORM_NUM_GROUPS: 1
    DEFORM_ON_PER_STAGE:
    - false
    - false
    - true
    - true
    DEPTH: 101
    NORM: FrozenBN
    NUM_GROUPS: 1
    OUT_FEATURES:
    - res3
    - res4
    - res5
    RES2_OUT_CHANNELS: 256
    RES5_DILATION: 1
    STEM_OUT_CHANNELS: 64
    STRIDE_IN_1X1: true
    WIDTH_PER_GROUP: 64
  RETINANET:
    BBOX_REG_LOSS_TYPE: smooth_l1
    BBOX_REG_WEIGHTS: &id001
    - 1.0
    - 1.0
    - 1.0
    - 1.0
    FOCAL_LOSS_ALPHA: 0.25
    FOCAL_LOSS_GAMMA: 2.0
    IN_FEATURES:
    - p3
    - p4
    - p5
    - p6
    - p7
    IOU_LABELS:
    - 0
    - -1
    - 1
    IOU_THRESHOLDS:
    - 0.4
    - 0.5
    NMS_THRESH_TEST: 0.5
    NORM: ''
    NUM_CLASSES: 80
    NUM_CONVS: 4
    PRIOR_PROB: 0.01
    SCORE_THRESH_TEST: 0.05
    SMOOTH_L1_LOSS_BETA: 0.1
    TOPK_CANDIDATES_TEST: 1000
  ROI_BOX_CASCADE_HEAD:
    BBOX_REG_WEIGHTS:
    - - 10.0
      - 10.0
      - 5.0
      - 5.0
    - - 20.0
      - 20.0
      - 10.0
      - 10.0
    - - 30.0
      - 30.0
      - 15.0
      - 15.0
    IOUS:
    - 0.6
    - 0.7
    - 0.8
  ROI_BOX_HEAD:
    BBOX_REG_LOSS_TYPE: smooth_l1
    BBOX_REG_LOSS_WEIGHT: 1.0
    BBOX_REG_WEIGHTS:
    - 10.0
    - 10.0
    - 5.0
    - 5.0
    CAT_FREQ_PATH: datasets/lvis/lvis_v1_train_cat_info.json
    CLS_AGNOSTIC_BBOX_REG: true
    CONV_DIM: 256
    EQL_FREQ_CAT: 200
    FC_DIM: 1024
    FED_LOSS_FREQ_WEIGHT: 0.5
    FED_LOSS_NUM_CAT: 50
    MULT_PROPOSAL_SCORE: true
    NAME: FastRCNNConvFCHead
    NORM: ''
    NUM_CONV: 0
    NUM_FC: 2
    POOLER_RESOLUTION: 7
    POOLER_SAMPLING_RATIO: 0
    POOLER_TYPE: ROIAlignV2
    PRIOR_PROB: 0.01
    SMOOTH_L1_BETA: 0.0
    TRAIN_ON_PRED_BOXES: false
    USE_EQL_LOSS: false
    USE_FED_LOSS: false
    USE_IACS: false
    USE_SIGMOID_CE: false
  ROI_HEADS:
    BATCH_SIZE_PER_IMAGE: 512
    IN_FEATURES:
    - p3
    - p4
    - p5
    - p6
    - p7
    IOU_LABELS:
    - 0
    - 1
    IOU_THRESHOLDS:
    - 0.6
    NAME: CustomCascadeROIHeads
    NMS_THRESH_TEST: 0.7
    NUM_CLASSES: 3
    POSITIVE_FRACTION: 0.25
    PROPOSAL_APPEND_GT: true
    SCORE_THRESH_TEST: 0.05
  ROI_KEYPOINT_HEAD:
    CONV_DIMS:
    - 512
    - 512
    - 512
    - 512
    - 512
    - 512
    - 512
    - 512
    LOSS_WEIGHT: 1.0
    MIN_KEYPOINTS_PER_IMAGE: 1
    NAME: KRCNNConvDeconvUpsampleHead
    NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
    NUM_KEYPOINTS: 17
    POOLER_RESOLUTION: 14
    POOLER_SAMPLING_RATIO: 0
    POOLER_TYPE: ROIAlignV2
  ROI_MASK_HEAD:
    CLS_AGNOSTIC_MASK: false
    CONV_DIM: 256
    NAME: MaskRCNNConvUpsampleHead
    NORM: ''
    NUM_CONV: 0
    POOLER_RESOLUTION: 14
    POOLER_SAMPLING_RATIO: 0
    POOLER_TYPE: ROIAlignV2
  RPN:
    BATCH_SIZE_PER_IMAGE: 256
    BBOX_REG_LOSS_TYPE: smooth_l1
    BBOX_REG_LOSS_WEIGHT: 1.0
    BBOX_REG_WEIGHTS: *id001
    BOUNDARY_THRESH: -1
    CONV_DIMS:
    - -1
    HEAD_NAME: StandardRPNHead
    IN_FEATURES:
    - res4
    IOU_LABELS:
    - 0
    - -1
    - 1
    IOU_THRESHOLDS:
    - 0.3
    - 0.7
    LOSS_WEIGHT: 1.0
    NMS_THRESH: 0.7
    POSITIVE_FRACTION: 0.5
    POST_NMS_TOPK_TEST: 1000
    POST_NMS_TOPK_TRAIN: 2000
    PRE_NMS_TOPK_TEST: 6000
    PRE_NMS_TOPK_TRAIN: 12000
    SMOOTH_L1_BETA: 0.0
  SEM_SEG_HEAD:
    COMMON_STRIDE: 4
    CONVS_DIM: 128
    IGNORE_VALUE: 255
    IN_FEATURES:
    - p2
    - p3
    - p4
    - p5
    LOSS_WEIGHT: 1.0
    NAME: SemSegFPNHead
    NORM: GN
    NUM_CLASSES: 54
  WEIGHTS: D:\MyFile\dataset\model\processed+aerial_processes\OurNet_R101_DCN\model_0069499.pth
OUTPUT_DIR: ./output/OurNet/OurNet_R101_DCN
SAVE_DEBUG: false
SAVE_PTH: false
SEED: -1
SOLVER:
  AMP:
    ENABLED: false
  BASE_LR: 0.02
  BASE_LR_END: 0.0
  BIAS_LR_FACTOR: 1.0
  CHECKPOINT_PERIOD: 500
  CLIP_GRADIENTS:
    CLIP_TYPE: value
    CLIP_VALUE: 1.0
    ENABLED: true
    NORM_TYPE: 2.0
  GAMMA: 0.1
  IMS_PER_BATCH: 1
  LR_SCHEDULER_NAME: WarmupMultiStepLR
  MAX_ITER: 180000
  MOMENTUM: 0.9
  NESTEROV: false
  REFERENCE_WORLD_SIZE: 0
  RESET_ITER: false
  STEPS:
  - 60000
  - 80000
  TRAIN_ITER: -1
  WARMUP_FACTOR: 0.00025
  WARMUP_ITERS: 4000
  WARMUP_METHOD: linear
  WEIGHT_DECAY: 0.0001
  WEIGHT_DECAY_BIAS: null
  WEIGHT_DECAY_NORM: 0.0
TEST:
  AUG:
    ENABLED: false
    FLIP: true
    MAX_SIZE: 4000
    MIN_SIZES:
    - 400
    - 500
    - 600
    - 700
    - 800
    - 900
    - 1000
    - 1100
    - 1200
  DETECTIONS_PER_IMAGE: 100
  EVAL_PERIOD: 0
  EXPECTED_RESULTS: []
  KEYPOINT_OKS_SIGMAS: []
  PRECISE_BN:
    ENABLED: false
    NUM_ITER: 200
VERSION: 2
VIS_PERIOD: 0
VIS_THRESH: 0.3

[03/19 20:45:13 detectron2]: Full config saved to ./output/OurNet/OurNet_R101_DCN\config.yaml
[03/19 20:45:13 d2.utils.env]: Using a generated random seed 13956036
[03/19 20:45:15 detectron2]: Model:
GeneralizedRCNN(
  (backbone): FPN(
    (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (top_block): LastLevelP6P7_P5(
      (p6): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
      (p7): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
    )
    (bottom_up): ResNet(
      (stem): BasicStem(
        (conv1): Conv2d(
          3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
      )
      (res2): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv1): Conv2d(
            64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
      )
      (res3): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv1): Conv2d(
            256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (3): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
      )
      (res4): Sequential(
        (0): DeformBottleneckBlock(
          (shortcut): Conv2d(
            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
          (conv1): Conv2d(
            512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (1): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (2): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (3): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (4): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (5): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (6): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (7): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (8): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (9): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (10): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (11): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (12): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (13): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (14): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (15): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (16): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (17): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (18): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (19): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (20): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (21): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (22): DeformBottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2_offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
      )
      (res5): Sequential(
        (0): DeformBottleneckBlock(
          (shortcut): Conv2d(
            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
          (conv1): Conv2d(
            1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (1): DeformBottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (2): DeformBottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2_offset): Conv2d(512, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv2): ModulatedDeformConv(
            in_channels=512, out_channels=512, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
      )
    )
  )
  (proposal_generator): OurNet(
    (iou_loss): IOULoss()
    (ournet_head): OurNetHead(
      (cls_tower): Sequential()
      (bbox_tower): Sequential(
        (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (1): GroupNorm(32, 256, eps=1e-05, affine=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (4): GroupNorm(32, 256, eps=1e-05, affine=True)
        (5): ReLU(inplace=True)
        (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (7): GroupNorm(32, 256, eps=1e-05, affine=True)
        (8): ReLU(inplace=True)
        (9): DFConv2d(
          (offset): Conv2d(256, 27, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
          (conv): ModulatedDeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=1, padding=1, dilation=1, groups=1, deformable_groups=1, bias=True)
        )
        (10): GroupNorm(32, 256, eps=1e-05, affine=True)
        (11): ReLU(inplace=True)
      )
      (share_tower): Sequential()
      (offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (reppoints_dconv): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
      (bbox_pred): Conv2d(256, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (scales): ModuleList(
        (0): Scale()
        (1): Scale()
        (2): Scale()
        (3): Scale()
        (4): Scale()
      )
      (relu): ReLU(inplace=True)
      (agn_hm): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    )
  )
  (roi_heads): CustomCascadeROIHeads(
    (box_pooler): ROIPooler(
      (level_poolers): ModuleList(
        (0): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
        (1): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
        (2): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
        (3): ROIAlign(output_size=(7, 7), spatial_scale=0.015625, sampling_ratio=0, aligned=True)
        (4): ROIAlign(output_size=(7, 7), spatial_scale=0.0078125, sampling_ratio=0, aligned=True)
      )
    )
    (box_head): ModuleList(
      (0): FastRCNNConvFCHead(
        (flatten): Flatten(start_dim=1, end_dim=-1)
        (fc1): Linear(in_features=12544, out_features=1024, bias=True)
        (fc_relu1): ReLU()
        (fc2): Linear(in_features=1024, out_features=1024, bias=True)
        (fc_relu2): ReLU()
      )
      (1): FastRCNNConvFCHead(
        (flatten): Flatten(start_dim=1, end_dim=-1)
        (fc1): Linear(in_features=12544, out_features=1024, bias=True)
        (fc_relu1): ReLU()
        (fc2): Linear(in_features=1024, out_features=1024, bias=True)
        (fc_relu2): ReLU()
      )
      (2): FastRCNNConvFCHead(
        (flatten): Flatten(start_dim=1, end_dim=-1)
        (fc1): Linear(in_features=12544, out_features=1024, bias=True)
        (fc_relu1): ReLU()
        (fc2): Linear(in_features=1024, out_features=1024, bias=True)
        (fc_relu2): ReLU()
      )
    )
    (box_predictor): ModuleList(
      (0): CustomFastRCNNOutputLayers(
        (cls_score): Linear(in_features=1024, out_features=4, bias=True)
        (bbox_pred): Linear(in_features=1024, out_features=4, bias=True)
      )
      (1): CustomFastRCNNOutputLayers(
        (cls_score): Linear(in_features=1024, out_features=4, bias=True)
        (bbox_pred): Linear(in_features=1024, out_features=4, bias=True)
      )
      (2): CustomFastRCNNOutputLayers(
        (cls_score): Linear(in_features=1024, out_features=4, bias=True)
        (bbox_pred): Linear(in_features=1024, out_features=4, bias=True)
      )
    )
  )
)
[03/19 20:45:15 fvcore.common.checkpoint]: [Checkpointer] Loading from D:\MyFile\dataset\model\processed+aerial_processes\OurNet_R101_DCN\model_0069499.pth ...
WARNING [03/19 20:45:15 fvcore.common.checkpoint]: Some model parameters or buffers are not found in the checkpoint:
proposal_generator.ournet_head.bbox_tower.9.conv.{bias, weight}
proposal_generator.ournet_head.bbox_tower.9.offset.{bias, weight}
WARNING [03/19 20:45:15 fvcore.common.checkpoint]: The checkpoint state_dict contains keys that are not used by the model:
  proposal_generator.ournet_head.bbox_tower.9.{bias, weight}
[03/19 20:45:15 d2.data.datasets.coco]: Loaded 150 images in COCO format from D:\MyFile\dataset\detection\datasets\test\annotations_ori.json
[03/19 20:45:15 d2.data.build]: Distribution of instances among all 3 categories:
|  category  | #instances   |  category  | #instances   |  category  | #instances   |
|:----------:|:-------------|:----------:|:-------------|:----------:|:-------------|
|   digger   | 41           | motocrane  | 196          | towercrane | 49           |
|            |              |            |              |            |              |
|   total    | 286          |            |              |            |              |
[03/19 20:45:15 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(1200, 1200), max_size=3200, sample_style='choice')]
[03/19 20:45:15 d2.data.common]: Serializing 150 elements to byte tensors and concatenating them all ...
[03/19 20:45:15 d2.data.common]: Serialized dataset takes 0.05 MiB
WARNING [03/19 20:45:15 d2.evaluation.coco_evaluation]: COCO Evaluator instantiated using config, this is deprecated behavior. Please pass in explicit arguments instead.
[03/19 20:45:15 d2.evaluation.evaluator]: Start inference on 150 batches
D:\MyFile\tool\Anaconda\lib\site-packages\torch\functional.py:445: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered inter
nally at  ..\aten\src\ATen\native\TensorShape.cpp:2157.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
[03/19 20:45:30 d2.evaluation.evaluator]: Inference done 11/150. Dataloading: 0.0007 s/iter. Inference: 0.3719 s/iter. Eval: 0.0003 s/iter. Total: 0.3729 s/iter. ETA=0:00:51
[03/19 20:45:36 d2.evaluation.evaluator]: Inference done 26/150. Dataloading: 0.0008 s/iter. Inference: 0.3555 s/iter. Eval: 0.0003 s/iter. Total: 0.3568 s/iter. ETA=0:00:44
[03/19 20:45:41 d2.evaluation.evaluator]: Inference done 41/150. Dataloading: 0.0008 s/iter. Inference: 0.3552 s/iter. Eval: 0.0003 s/iter. Total: 0.3564 s/iter. ETA=0:00:38
[03/19 20:45:46 d2.evaluation.evaluator]: Inference done 55/150. Dataloading: 0.0009 s/iter. Inference: 0.3556 s/iter. Eval: 0.0003 s/iter. Total: 0.3569 s/iter. ETA=0:00:33
[03/19 20:45:51 d2.evaluation.evaluator]: Inference done 70/150. Dataloading: 0.0008 s/iter. Inference: 0.3544 s/iter. Eval: 0.0003 s/iter. Total: 0.3557 s/iter. ETA=0:00:28
[03/19 20:45:56 d2.evaluation.evaluator]: Inference done 84/150. Dataloading: 0.0008 s/iter. Inference: 0.3553 s/iter. Eval: 0.0003 s/iter. Total: 0.3565 s/iter. ETA=0:00:23
[03/19 20:46:01 d2.evaluation.evaluator]: Inference done 96/150. Dataloading: 0.0009 s/iter. Inference: 0.3643 s/iter. Eval: 0.0003 s/iter. Total: 0.3656 s/iter. ETA=0:00:19
[03/19 20:46:07 d2.evaluation.evaluator]: Inference done 110/150. Dataloading: 0.0010 s/iter. Inference: 0.3653 s/iter. Eval: 0.0003 s/iter. Total: 0.3670 s/iter. ETA=0:00:14
[03/19 20:46:12 d2.evaluation.evaluator]: Inference done 124/150. Dataloading: 0.0010 s/iter. Inference: 0.3659 s/iter. Eval: 0.0003 s/iter. Total: 0.3675 s/iter. ETA=0:00:09
[03/19 20:46:17 d2.evaluation.evaluator]: Inference done 138/150. Dataloading: 0.0010 s/iter. Inference: 0.3665 s/iter. Eval: 0.0003 s/iter. Total: 0.3681 s/iter. ETA=0:00:04
[03/19 20:46:22 d2.evaluation.evaluator]: Total inference time: 0:00:54.190565 (0.373728 s / iter per device, on 1 devices)
[03/19 20:46:22 d2.evaluation.evaluator]: Total inference pure compute time: 0:00:53 (0.369442 s / iter per device, on 1 devices)
[03/19 20:46:22 d2.evaluation.coco_evaluation]: Preparing results for COCO format ...
[03/19 20:46:22 d2.evaluation.coco_evaluation]: Saving results to ./output/OurNet/OurNet_R101_DCN\inference_test\coco_instances_results.json
[03/19 20:46:22 d2.evaluation.coco_evaluation]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
[03/19 20:46:22 d2.evaluation.fast_eval_api]: Evaluate annotation type *bbox*
[03/19 20:46:22 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.05 seconds.
[03/19 20:46:22 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[03/19 20:46:22 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.01 seconds.
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.010
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.013
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.015
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.015
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.020
[03/19 20:46:22 d2.evaluation.coco_evaluation]: Evaluation results for bbox:
|  AP   |  AP50  |  AP75  |  APs  |  APm  |  APl  |
|:-----:|:------:|:------:|:-----:|:-----:|:-----:|
| 1.039 | 2.132  | 0.990  | 0.000 | 0.000 | 1.226 |
[03/19 20:46:22 d2.evaluation.coco_evaluation]: Per-category bbox AP:
| category   | AP    | category   | AP    | category   | AP    |
|:-----------|:------|:-----------|:------|:-----------|:------|
| digger     | 0.000 | motocrane  | 2.673 | towercrane | 0.446 |
[03/19 20:46:22 detectron2]: Evaluation results for test in csv format:
[03/19 20:46:22 d2.evaluation.testing]: copypaste: Task: bbox
[03/19 20:46:22 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl
[03/19 20:46:22 d2.evaluation.testing]: copypaste: 1.0395,2.1322,0.9901,0.0000,0.0000,1.2261

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions